优达(Udacity)-机器学习基础-回归

本文介绍了Udacity机器学习基础课程中的线性回归概念,结合sklearn库展示了线性回归的实践应用,通过迷你项目提供代码示例。
摘要由CSDN通过智能技术生成

用到的sklearn代码集锦:

from sklearn.linear_model import LinearRegression
reg = LinearRegression()
reg.fit(ages_train , net_worths_train)

#这里的predict中27的状态需要看测试特征是几维的,比方说这里的作业是二维的
#就应该是reg.predict([[27]]),这里也可以用预测的特征来代替。
print "Katie's net worth prediction: ", reg.predict([27])
print "slope:", reg.coef_
print "intercept:", reg.intercept_

print "\n ############ stats on test dataset ############\n"
print "r-squared score:", reg.score(ages_test, net_worths_test)

print "\n ############ stats on training dataset ############\n"
print "r-squared score:", reg.score(ages_train, net_worths_train)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值