- 博客(103)
- 收藏
- 关注
原创 Python去除list中重复的元素
可以使用内置的set方法list1 = ['b','c','d','b','c','a','a']list2 = list(set(list1))print list2速度更快的一种方法list1 = ['b','c','d','b','c','a','a']list2 = {}.fromkeys(list1).keys()print list2但是通过这两种方法获得的list2排序变
2017-12-18 13:12:09
13173
原创 Word文档用通配符批量替换日期格式
= =搬砖的过程中要做一件很痛苦的事情就是把word上的任务转到团队任务管理的软件上去..但是呢,其他职员在写文档的时候,日期用的格式很不统一,而且和乙方回复的文档日期格式也不一致,诸如2017.XX.XXXX月XX日XX月XX号所以在录入的过程中真的很痛苦..这里我们可以用word自带的批量替换功能,用通配符去匹配然后批量替换开始菜单栏 -> 替换或者使用快捷键’Ctrl+H’第一种格式的
2017-12-18 13:05:38
11005
原创 高斯混合模型聚类算法和K-Means聚类算法
高斯混合模型聚类算法概念:混合高斯模型就是指对样本的概率密度分布进行估计,而估计的模型是几个高斯模型加权之和(具体是几个要在模型训练前建立好)。每个高斯模型就代表了一个类(一个Cluster)。对样本中的数据分别在几个高斯模型上投影,就会分别得到在各个类上的概率。然后我们可以选取概率最大的类所为判决结果。SKlearn链接:Gaussian Mixture Model Ellipsoids优点
2017-12-18 12:56:22
5223
原创 Udacity机器学习(进阶)P3用到的函数笔记
pandas.DataFrame.dropDataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')示例:>>> df = pd.DataFrame(np.arange(12).reshape(3,4), c
2017-12-14 12:31:23
1037
原创 Udacity机器学习(进阶)——朴素贝叶斯迷你项目2
2.计算3.最大可能性sample_memo = '''Milt, we're gonna need to go ahead and move you downstairs into storage B. We have some new people coming in, and we need all the space we can get. So if you could just go
2017-12-11 10:58:13
1321
原创 python函数—filter,map,keys
filter() 函数含有两个参数:function、list 函数通过function参数返回的结果是否为真来过滤list参数中的相,最后返回一个新列表示例:>>>a=[1,2,3,4,5,6,7]>>>b=filter(lambda x:x>5, a)>>>print b>>>[6,7]若filter参数值为None,就用identity()函数 list参数中所有为假的元素都
2017-12-11 10:35:34
1324
原创 Udacity机器学习进阶—监督学习之神经网络迷你项目
1.创建感知def activate(self,inputs): """ Takes in @param inputs, a list of numbers equal to length of weights. @return the output of a threshold perceptron with given inputs based o
2017-12-10 16:17:34
1054
原创 Udacity机器学习入门-主成分分析(PCA)
PCA是一套全面应用于各类数据分析的分析方法,这些分析包括特征集压缩 每当你需要将数据直观化的时候,都可以采用它数据维度判断下列数据的维度(一维还是二维): 二维 一维 这个也是一维的哦~! 数据很容易地映射到两个变量中的一个变量上,符合一维的定义,所以也是一维的。 所以在这里我们可以更加好的理解一维的含义 我们可以看到,如果重新定义x、y坐标轴,就可以得到上图
2017-12-06 23:55:31
911
原创 Udacity-机器学习入门-特征缩放
给出这三个人的身高和体重:按照我们的理解,明显Chris应该穿L码,但是根据身高+体重的结果,Chris却应该穿S。这是为什么呢? 因为在这里,体重完全主导了结果,身高的影响微乎其微。 而我们应该尽量让两者对结果有同等重要的影响。 这就引来了特征缩放——把特征都限制在[0,1]之间。 解释:X’是你要构建的新特征X(max)和X(min)是原始特征再被缩放前所取的最小值和最大值
2017-12-04 15:39:28
964
原创 Udacity-机器学习入门-聚类
点与聚类匹配(K均值算法)步骤: 分配 将点按照离聚类中心的距离分好 优化 移动使聚类中心到这些点的总二次距离降到最小 3.重复上述步骤 可视化工具中来看具体操作:随机放中心,对点按距离分类移动中心至其点的总二次距离最小的位置,再次对点分类 再次移动中心至点的总二次距离最小的位置
2017-12-03 17:41:36
1092
原创 Udacity监督学习——决策树
分类任务 回归任务分类任务和回归任务的不同,不在于输入,而在于输出 分类(Classification):输出来自(小的)离散集 回归(Regression):输出来自连续值 分类学习 实例(input):值和属性的向量输入 概念:描述一个事物集合的东西。世界上物体之间的映射,以及一个集合中的成员关系。 目标概念:实际的答案 假设类(Hypythsis Cl
2017-11-30 16:52:48
718
原创 numpy库矩阵信息的获取(最大值最小值、平均值、中值、方差标准差、求和)
最大值、最小值获得整个矩阵、行或列的最大最小值。 获得元素最大值的函数:max获得元素最小值的函数:min示例代码:import numpy as npa = np.array([[1,2,3],[4,5,6]])print(a.max()) #获取整个矩阵的最大值 结果: 6print(a.min()) #结果:1# 可以指定关键字参数axis来获得行最大(小)值或列最大(小)值# a
2017-11-29 13:50:12
89717
3
原创 Python 中zip()
语法:zip([iterable, ...]) iterable——一个或多个迭代器实例:>>>a = [1,2,3]>>> b = [4,5,6]>>> c = [4,5,6,7,8]>>> zipped = zip(a,b) # 打包为元组的列表[(1, 4), (2, 5), (3, 6)]>>> zip(a,c) # 元素个数与最短的列表一
2017-11-28 10:00:52
502
2
原创 优达(Udacity)-机器学习基础-误差原因
误差原因模型预测中,模型可能出现的误差来自两个主要来源:因模型无法表示基本数据的复杂度而造成的偏差(bias) 数据足够,模型不够复杂(过度简化),欠拟合因模型对训练它所用的有限数据过度敏感而造成的方差(variance)。 预测结果对于任何给定的测试样本会出现多大的变化 对训练集高度敏感——过拟合(overfitting) 可通过更多的数据进行训练,以降低模型预测结果的
2017-11-27 17:47:46
669
原创 sklearn 精确率、召回率
精确率sklearn.metrics.precision_score(y_true, y_pred, labels=None, pos_label=1, average=’binary’, sample_weight=None)[source]Examples>>> from sklearn.metrics import precision_score>>> y_true = [0, 1, 2
2017-11-27 14:26:59
9551
1
原创 python Enumerate( )方法
Enumerate( )允许我们对一个东西进行遍历并且自动获取一个计数器用法:for counter, value in enumerate(some_list): print(counter, value)更多:他有一个可选参数令这个方法更加有用my_list = ['apple', 'banana', 'grapes', 'pear']for c, value in enum
2017-11-27 14:01:55
559
原创 numpy 构建一个全为零的数组 zeros()方法
python构建指定长度全为零的数组numpy.zeros( )语法:numpy.zeros(shape, dtype=float, order='C') 返回一个指定类型和格式的数组的全为0的数组示例:指定长度的一维数组>>> np.zeros(5)array([ 0., 0., 0., 0., 0.])指定数据类型,指定长度的一维数组>>> np.zeros((5), d
2017-11-27 11:43:21
75282
原创 jQuery向某个元素中添加元素
写网页的时候,需要读取后端数据然后作为一个元素写进前端页面,所以就用了jQuery来完成这个功能。添加新的 HTML 内容 用于添加新内容的四个 jQuery 方法:append() - 在被选元素的结尾插入内容prepend() - 在被选元素的开头插入内容after() - 在被选元素之后插入内容before() - 在被选元素之前插入内容这里我使用的是通过append() 向框架的
2017-11-27 09:13:32
7709
原创 优达(Udacity)-机器学习基础-评估指标
评估指标由要解决的问题选择性能指标,然后测试模型表现。 准确度:某特定类别中我们正确标记并正确识别为此类别的项目或数据点的数量,除以该类别中全部项目或数据点的数量。准确度的缺陷 准确度会在出现偏斜类时出现问题 有时你宁可猜测某人是无辜的以免被误关进监狱 有时你宁可假设某人是有罪的再进行排除混淆矩阵 左边矩阵上方是实际分类,左方是预测的分类。决策树混淆矩阵召回率(Recall)
2017-11-27 09:04:51
856
原创 优达(Udacity)-机器学习基础-交叉验证
交叉验证(Cross-validation)在sklearn中训练/测试分离sklearn链接:http://scikit-learn.org/stable/modules/cross_validation.html让我们加载数据集以适应线性svm:>>> import numpy as np>>> from sklearn.model_selection import train_test_
2017-11-24 16:55:37
608
原创 Python 数组指令
往数组中添加元素可以通过append方法在列表的末尾添加单个元素x = [1,2,3]x.append(4)或者使用extend方法在列表末位添加多个元素,参数就变成了列表x.append([4,5,6])或者使用insert方法在任意位置添加元素,第一个参数是插入元素的位置,第二个参数是插入元素的值x.insert(0,-1)删除使用del关键字删除指定位置的元素input =
2017-11-24 14:56:19
727
原创 优达(Udacity)-机器学习基础-异常值
回归中的异常值选出下面的最好的线性回归(考虑到异常值,并假设线性回归将最小平方误差减到最低) 答案: 这一条线会获得最小的平方误差,可以看到异常值对预测的影响是很大的。产生异常的原因第三种情况是不会考虑的前两种情况是应该被忽略的异常值最后一点是应该被重视的异常值(如金融诈骗)选择异常值第二行第一个存在争议= =其实我认为他不属于异常值 但是老师说,这里可能是双重错误——标签分类也错了
2017-11-24 11:49:33
902
原创 优达(Udacity)-机器学习基础-回归
from sklearn.linear_model import LinearRegressionreg = LinearRegerssion()reg.fit(ages_train , net_worths_train)print "Katie's net worth prediction: ", reg.predict([27])print "slope:", reg.coef_prin
2017-11-24 09:36:28
1140
原创 优达(Udacity)-机器学习基础-数据集与问题(安然数据集)
写在前面: python2对于中文的处理能力很弱,所以使用中文注解的时候会报错 解决方案: 在.py文件前加编码注释, 选用utf-8编码即可使用中文.# -*- coding: utf-8 -*-附上用到的一些python方法:dict.items( ) Python 字典(Dictionary) items() 函数以列表返回可遍历的(键, 值) 元组数组。实例:#!/usr/b
2017-11-23 16:37:12
2875
原创 Myeclipse 6.5 在线破解方法
现在网上有很多可以给Myeclipse 6.5在线生成注册码的网站,随便搜一下就能赵铎,或者可以使用以下网址: http://www.sojson.com/myeclipse8.5/ 输入名字,会自动生成注册码打开myeclipse 6.5, 在菜单栏点击 MyEclipse -> Subscription Information,然后输入刚才的账号和注册码激活即可
2017-11-21 09:53:00
4658
原创 Anaconda环境管理
包管理conda install numpy scipy pandasconda remove numpyconda list创建环境,在需要环境的目录下创建conda create -n env_name python=3conda create -n env_name python=2conda create -n env_name numpy scipy激活和退出环境acti
2017-11-18 16:28:13
628
原创 WIN10 下 VS CODE 更新后拓展宿主意外终止 问题解决方法(终极解决办法)
自某次vsc更新后…每次一更新打开就会报这个错拓展宿主意外终止(按照他的提示重载重装都是不好用的啊喂~)烦不胜烦。在网上找了大量资料以后找到了一个解决方法,删除git,这样就不会报错了。但是这样做一是只能解一时之急,每次更新又要重新改一次。二是~git功能就不能用了~大部分用vsc的程序猿们其实还是需要这个功能哒~所以这次我带来了终极解决方案:不要用中文的用户名【严肃脸】 不要用中文的用户名【很重
2017-11-18 16:23:16
9688
2
原创 Udacity机器学习入门笔记——Random Forest
机器学习入门第五节课,三个算法自选一个,这里我先选择了Random Forest参数调整链接: http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.htmlRandomForestClassifier(n_estimators=10, criterion=’gini’, m
2017-11-15 14:59:32
623
原创 Udacity机器学习入门笔记——决策树(Decision Tree)
决策树原理:使用计算机算法根据数据自动找出决策边界参考下图: 决策树的python代码(sklearn)链接:http://scikit-learn.org/stable/modules/tree.html >>> from sklearn import tree>>> X = [[0, 0], [1, 1]]>>> Y = [0, 1]>>> clf = tree.DecisionTreeC
2017-11-15 11:16:44
800
原创 Udacity机器学习入门笔记——朴素贝叶斯
这里比较简单就不多说了,主要记一下使用的代码吧GaussianNB(高斯朴素贝叶斯)链接: http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html>>> import numpy as np>>> X = np.array([[-1, -1], [-2, -1], [-3, -2],
2017-11-13 19:44:12
679
原创 Udacity机器学习入门笔记——支持向量机(SVM)
原则对他涉及的分类均最大化了最近点的距离——Margin那么下面这个图应该是哪条线呢? 应该是下方的线 诚然,上方的线分割的更好,但是它犯了分类方面的错误 支持向量机总是将正确分类标签作为第一考虑要素,然后再对间隔进行最大化 如果我们不关注分类正确,那么会得到很多比这两个线更能使间隔最大化的线~ 比方说在无穷远处~ 所以对于支持向量机,你必须尽力保证分类正确。在此前提下,对间隔进行
2017-11-13 17:05:13
756
原创 团队合作网页开发问题记录-Material Design Lite框架试水
最近在做一个项目,用的是Material Design的风格,我主要负责写Web端的前端部分,写的过程中遇到了很多很“匪夷所思”的问题,在这篇文章中记录下来,留个纪念~因为第一次用Material Design Lite的框架,没有找到像bootstrap那么详细的使用教程,所以在应用过程中基本是摸着石头过河~看官网说明一部分自己猜一部分~出现的问题简直…介绍一下整体情况,我使用的是flex布局,仿
2017-11-03 15:38:21
629
原创 从github上使用GIT命令将代码下载到本地
在开源github上很多时候会看到非常感兴趣的项目,或者是大家协同在github上进行开发,此时会需要将github上的代码(等)下载到本地。基本前提是安装了git。首先创建一个空的文件夹,然后进入该目录,右键选择git bush 先使用init命令初始化 然后使用命令 clone url即可此处的url是你想下载的项目在github上提供的url,位置如图: 关于在本地写好代码后如何上
2017-11-02 10:30:44
2933
原创 LeetCode解析-7. Reverse Integer
7. Reverse Integer题目描述:Reverse digits of an integer.Example :Example1: x = 123, return 321Example2: x = -123, return -321Note: The input is assumed to be a 32-bit signed integer. Your function should
2017-10-30 19:21:34
465
原创 WIN10下VS CODE 更新后拓展宿主意外终止问题解决方法
VS CODE最近更新后,一打开就会出现拓展宿主意外终止的错误,点重新加载等都不好用。出现这个问题主要是和git有关,做如下操作处理就好:打开vscode安装文件夹->resource文件夹->app文件夹->extensions文件夹->删除git文件夹 然后点重新加载就恢复正常了,但是这样以后,我没记错的话有一些git相关的功能就实现不了了~静待什么时候能修复…
2017-10-25 17:19:21
9351
10
原创 JavaScript学习笔记
1. 数据类型和变量1.1 等式在下面的示例中,JavaScript 传入字符串”1”,并将其转换为 true,然后与布尔值 true 比较。"1" == true返回:true 当你使用 == 或 != 运算符时,JavaScript 首先将每个值转换为相同类型(如果不是相同类型的话);因此叫做“转型”!这通常不是你希望出现的行为,比较值是否相等时使用 == 和 != 运算符并不是很好的做法。绝
2017-10-24 17:52:38
675
原创 ES6学习笔记-Udacity
Part 1: ES6 语法——For…of…循环(附首字母大写方法)格式:const digits = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];for (const digit of digits) { console.log(digit);}Tips:建议使用复数对象名称来表示多个值的集合。这样,循环该集合时,可以使用名称的单数版本来表示集合中的单个值。例如,for
2017-10-24 16:39:01
460
原创 MyEclipse6.5离线安装SVN插件
下载svn插件,解压出来备用 地址:http://subclipse.tigris.org/files/documents/906/46495/site-1.6.5.zip在MyEclipse 6.5的安装路径下的plug_in(/MyEclipse 6.5/eclipse/plugins)下新建文件夹:site-1.6.5(或者是 SVN 等名字);打开MyEclipse 6.5,菜单栏 →
2017-10-23 15:50:34
842
1
原创 SQL语句备忘录
加班写了一天的SQL语句,记录备忘SQL语句中如何查询一列的几个值对应的另一列的值表如下: Column1 Column2 Column3 a 3 6 a 8 5 b 4 2 b 2 7使用sql语句找出每个column1的值对应的column2中最大的那一行..SELECT Column1, MAX(Column2) FROM [表]G
2017-10-20 21:34:58
456
原创 LeetCode-263. Ugly Number
263. Ugly Number题目描述:Write a program to check whether a given number is an ugly number.Ugly numbers are positive numbers whose prime factors only include 2, 3, 5. For example, 6, 8 are ugly while 14 is
2017-10-19 09:35:59
381
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅