-
判断N结点的无向图G是否有环
假定:结点个数为M,边条数为E遍历一遍,判断图分为几部分(假定为P部分,即图有 P 个连通分量)对于每一个连通分量,如果无环则只能是树,即:边数=结点数-1只要有一个满足 边数 > 结点数-1
原图就有环
将P个连通分量的不等式相加,就得到:
所有边数 > 所有结点数 + 连通分量个数
即: E + P > M 所以只有判断 E + P > M 就表示原图有环,否则无环.遍历一遍,判断图分为几部分(假定为P部分,即图有 P 个连通分量)
判断无向图是否有环
最新推荐文章于 2023-12-21 22:18:55 发布
该博客介绍了如何判断一个无向图是否存在环。通过遍历图的连通分量,如果某个连通分量的边数大于其结点数减一,那么原图存在环。算法基于深度优先搜索实现,并提供了C语言的代码示例。
摘要由CSDN通过智能技术生成