判断无向图是否有环

该博客介绍了如何判断一个无向图是否存在环。通过遍历图的连通分量,如果某个连通分量的边数大于其结点数减一,那么原图存在环。算法基于深度优先搜索实现,并提供了C语言的代码示例。
摘要由CSDN通过智能技术生成
  •  判断N结点的无向图G是否有环
    假定:结点个数为M,边条数为E
    遍历一遍,判断图分为几部分(假定为P部分,即图有 P 个连通分量)
    对于每一个连通分量,如果无环则只能是树,即:边数=结点数-1
    只要有一个满足      边数   >   结点数-1
    原图就有环
    将P个连通分量的不等式相加,就得到:
        所有边数   >   所有结点数 + 连通分量个数
    即:  E + P > M  所以只有判断 
     E  + P > M   就表示原图有环,否则无环.
    遍历一遍,判断图分为几部分(假定为P部分,即图有 P 个连通分量)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值