聚类效果评估、内部指标(Jaccard系数、FM指数、Rand指数)、外部指标(DB指数、Dunn指数)、轮廓系数(Silhouette Coefficient)

本文介绍了聚类效果评估的重要性和各种指标,包括内部指标如Jaccard系数、FM指数、Rand指数,外部指标如DB指数、Dunn指数,以及轮廓系数(Silhouette Coefficient)。这些指标用于量化聚类结果的质量,帮助判断聚类算法的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

聚类效果评估、内部指标(Jaccard系数、FM指数、Rand指数)、外部指标(DB指数、Dunn指数)、轮廓系数(Silhouette Coefficient)

目录

聚类效果评估、内部指标(Jaccard系数、FM指数、Rand指数)、外部指标(DB指数、Dunn指数)、轮廓系数(Silhouette Coefficient)

聚类效果评估

内部指标

外部指标

轮廓系数(Silhouette Coefficient)


聚类效果评估

聚类性能度量,亦称为聚类“有效性指标”(validity index

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值