CNN
zhongshaoyy
这个作者很懒,什么都没留下…
展开
-
CNN数值初始化——xavier(下)
作者:冯超链接:https://zhuanlan.zhihu.com/p/22044472来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。上回说到我们从前向的方向推导,发现了这些0均值的随机变量在计算过程中会产生方差扩散的问题,我们并且从前向的方向给出了解决的办法。既然在刚才的句子中我们反复提到了前向这两个字,那肯定是在别有用心地告诉大家——还有后转载 2016-10-28 16:53:06 · 6203 阅读 · 1 评论 -
蒸馏神经网络(Distill the Knowledge in a Neural Network)
本文是阅读Hinton 大神蒸馏神经网络论文的笔记,特此说明。此文读起来很抽象,但是和我的研究方向:神经网络的压缩十分相关,因此决定花气力好好理解一下。 1、Introduction 文章开篇用一个比喻来引入网络蒸馏:昆虫作为幼虫时擅于从环境中汲取能量,但是成长为成虫后确是擅于其他方面,比如迁徙和繁殖等。同理神经网络训练阶段从大量数据中获取网络模型,训练阶段可以利用大量的计算资源且不需要原创 2016-12-13 20:26:26 · 39100 阅读 · 8 评论 -
神经网络训练时常见的概念问题
epoch、 iteration和batchsize,三个的区别:(1)batchsize:一个批次样本含量。在深度学习中,即每次训练在训练集中取 batchsize 个样本训练;(2)iteration:1个iteration等于使用batchsize个样本训练一次;(3)epoch:1个epoch等于使用训练集中的全部样本训练一次;举个原创 2017-03-09 11:58:43 · 2876 阅读 · 1 评论 -
对抗样本与生成式对抗网络
最近一个月,人工智能领域听的最多的名词之一,莫过于对抗样本和对抗性网络,从最开始Yann LeCun在Quora上直播时表示生成对抗性网络近期人工智能最值得期待的算法之一,到近日生成对抗性网络的发明者Ian Goodfellow在Quora上直播讲述自己的学习经历和研究,而对比起LeCun, Ian Goodfellow的知名度可能没有那么高,但是Goodfellow是Yoshua B转载 2016-12-07 22:03:37 · 2148 阅读 · 0 评论 -
反卷积与语义分割
原文地址:http://blog.csdn.net/u012938704/article/details/53202103?locationNum=1&fps=1《Learning Deconvolution Network for Semantic Segmentation》阅读笔记FCN首先论文对比《Fully convolutional networks for转载 2016-11-24 14:28:35 · 2852 阅读 · 0 评论 -
用反卷积(Deconvnet)可视化理解卷积神经网络
可视化理解卷积神经网络原文地址:http://blog.csdn.net/hjimce/article/details/50544370作者:hjimce一、相关理论本篇博文主要讲解2014年ECCV上的一篇经典文献:《Visualizing and Understanding Convolutional Networks》,可以说是CNN领域可视化理解转载 2016-11-24 14:15:59 · 2844 阅读 · 3 评论 -
神经网络的Dropout的理解
Dropout是2012年深度学习视觉领域的开山之作paper:《ImageNet Classification with Deep Convolutional》所提到的算法,用于防止过拟合。在我刚入门深度学习,搞视觉的时候,就有所耳闻,当时只知道它是为了防止过拟合。记得以前啥也不懂,看到《ImageNet Classification with Deep Convolutional》的思路,然后转载 2016-11-15 20:32:50 · 8823 阅读 · 0 评论 -
LeNet的详细网络结构
针对MNIST的LeNet结构如下图所示:包含2个卷积层,2个max池化层,2个全连接接层和1个relu层与一个softmax层。下面我来推导一下每层的神经元数目和参数的个数。1、输入层:输入层输入一个28*28的图片。2、卷积层1:该层使用20个5*5的卷积核分别对输入层图片进行卷积,所以包含20*5*5=500个参数权值参数。卷积后图片边长为(28-5+1)转载 2016-11-14 21:50:51 · 6081 阅读 · 0 评论 -
ReLu(Rectified Linear Units)激活函数
起源:传统激活函数、脑神经元激活频率研究、稀疏激活性传统Sigmoid系激活函数传统神经网络中最常用的两个激活函数,Sigmoid系(Logistic-Sigmoid、Tanh-Sigmoid)被视为神经网络的核心所在。从数学上来看,非线性的Sigmoid函数对中央区的信号增益较大,对两侧区的信号增益小,在信号的特征空间映射上,有很好的效果。从神经科学上来看转载 2016-11-14 21:47:12 · 640 阅读 · 0 评论 -
图像卷积与滤波的一些知识点
之前在学习CNN的时候,有对卷积进行一些学习和整理,后来就烂尾了,现在稍微整理下,先放上来,以提醒和交流。一、线性滤波与卷积的基本概念 线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素和滤波器转载 2016-10-31 10:27:42 · 494 阅读 · 0 评论 -
CNN数值初始化——xavier(上)
作者:冯超链接:https://zhuanlan.zhihu.com/p/22028079来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。上一回我们做了三个小实验。第一个是正常的实验,表现优异;第二个实验我们把初始化调整得很奇葩(为什么奇葩?),最终训练结果弱爆了;第三个实验我们把非线性函数重新换回sigmoid,模型奇迹般地回血,虽然表现不够完美转载 2016-10-28 16:51:17 · 11362 阅读 · 0 评论 -
Network In Network笔记-ICLR 2014
Network In Network学习笔记原文地址:http://blog.csdn.net/hjimce/article/details/50458190作者:hjimce一、相关理论本篇博文主要讲解2014年ICLR的一篇非常牛逼的paper:《Network In Network》,过去一年已经有了好几百的引用量,这篇paper改进了传统的CNN网络,采转载 2016-12-27 18:53:28 · 738 阅读 · 0 评论