论文笔记
文章平均质量分 90
zhongshaoyy
这个作者很懒,什么都没留下…
展开
-
对抗生成网络(Generative Adversarial Net)
原文地址:http://blog.csdn.net/stdcoutzyx/article/details/53151038引入Discriminative Model的繁荣发展最近,深度学习在很多领域的突破性进展想必不用我多说了。但大家似乎发现了这样的一个现实,即深度学习取得突破性进展的地方貌似都是discriminative的模型。所谓的discriminativ转载 2017-02-28 20:34:28 · 1002 阅读 · 0 评论 -
令人拍案叫绝的Wasserstein GAN
原文地址:https://zhuanlan.zhihu.com/p/25071913 作者:郑华滨在GAN的相关研究如火如荼甚至可以说是泛滥的今天,一篇新鲜出炉的arXiv论文《Wasserstein GAN》却在Reddit的Machine Learning频道火了,连Goodfellow都在帖子里和大家热烈讨论,这篇论文究竟有什么了不得的地方呢? 要知道自从201转载 2017-02-28 20:36:19 · 5253 阅读 · 0 评论 -
蒸馏神经网络(Distill the Knowledge in a Neural Network)
本文是阅读Hinton 大神蒸馏神经网络论文的笔记,特此说明。此文读起来很抽象,但是和我的研究方向:神经网络的压缩十分相关,因此决定花气力好好理解一下。 1、Introduction 文章开篇用一个比喻来引入网络蒸馏:昆虫作为幼虫时擅于从环境中汲取能量,但是成长为成虫后确是擅于其他方面,比如迁徙和繁殖等。同理神经网络训练阶段从大量数据中获取网络模型,训练阶段可以利用大量的计算资源且不需要原创 2016-12-13 20:26:26 · 39100 阅读 · 8 评论 -
Network In Network笔记-ICLR 2014
Network In Network学习笔记原文地址:http://blog.csdn.net/hjimce/article/details/50458190作者:hjimce一、相关理论本篇博文主要讲解2014年ICLR的一篇非常牛逼的paper:《Network In Network》,过去一年已经有了好几百的引用量,这篇paper改进了传统的CNN网络,采转载 2016-12-27 18:53:28 · 738 阅读 · 0 评论 -
ShiftCNN —— 基于量化的低精度网络表达
一个利用低精度和量化技术实现的神经网络压缩与加速方案。 个人认为,这是低精度量化方面少有的具有一定工程可行性的方案(虽然文中没有给出详细的模型大小速度方面的指标)。文章链接: 《ShiftCNN: Generalized Low-Precision Architecture for Inference of Convolutional Neural Networks》模型转换示例代转载 2017-11-16 16:05:24 · 1510 阅读 · 0 评论 -
Channel Pruning for Accelerating Very Deep Neural Networks 论文笔记
之前pruning操作都是针对于W矩阵,本文另辟蹊径采取对channel进行pruning的方式来减小运算量。来自ICCV2017,是作者在Face++完成的工作。 PDF Code作者基于CNN每一层都是稀疏地假设,考虑是否能找到neuron之间的关系,仅留下最具有代表性地neuron?分为两步解决问题:找出每一层具有代表性地neuron,我们利用lasso r原创 2017-11-16 15:57:09 · 6474 阅读 · 4 评论