本文是阅读Hinton 大神在2014年NIPS上一篇论文:蒸馏神经网络的笔记,特此说明。此文读起来很抽象,大篇的论述,鲜有公式和图表。但是鉴于和我的研究方向:神经网络的压缩十分相关,因此决定花气力好好理解一下。
1、Introduction
文章开篇用一个比喻来引入网络蒸馏:
昆虫作为幼虫时擅于从环境中汲取能量,但是成长为成虫后确是擅于其他方面,比如迁徙和繁殖等。
同理神经网络训练阶段从大量数据中获取网络模型,训练阶段可以利用大量的计算资源且不需要实时响应。然而到达使用阶段,神经网络
本文介绍了Hinton的神经网络蒸馏概念,通过比喻解释了网络蒸馏的原理,即从大型复杂模型中提取知识到小型模型,保留其泛化能力。蒸馏过程中,使用复杂模型的软目标(高熵概率分布)来训练小模型,以减少计算资源和提高速度。实验表明,这种方法在MNIST和语音识别任务中有效,且在无标签数据或部分有标签数据上表现良好。
本文是阅读Hinton 大神在2014年NIPS上一篇论文:蒸馏神经网络的笔记,特此说明。此文读起来很抽象,大篇的论述,鲜有公式和图表。但是鉴于和我的研究方向:神经网络的压缩十分相关,因此决定花气力好好理解一下。
1、Introduction
文章开篇用一个比喻来引入网络蒸馏:
昆虫作为幼虫时擅于从环境中汲取能量,但是成长为成虫后确是擅于其他方面,比如迁徙和繁殖等。
同理神经网络训练阶段从大量数据中获取网络模型,训练阶段可以利用大量的计算资源且不需要实时响应。然而到达使用阶段,神经网络
1237
1990
2651
6367

被折叠的 条评论
为什么被折叠?
>