特种兵教你目测距离

向前伸直手臂树起拇指,闭上左眼,右眼、拇指、目标形成直线,闭上右眼,睁开

左眼,此时记住左眼、拇指延长直线目标右侧那一点,目测那一点与目标的距离并乘以10,即你到目标的大概距离。

竖起大拇指。手臂放平目光通过指尖是与水平线的夹角约120密位,看目标高度估算出视线经过目标顶部和目标底部的两条实现的夹角为多少密位,用密位乘以目标高度(凭经验)即为目标距离

例如,身高约1.5米,视线通过其头顶和脚底的夹角约100密位,距离为150米

这个几何学中有介绍。由于通常情况下,某些物体的长度是一个已知量,比如汽车、房屋等,那么根据在目测中占据多大角度(军事测量中采用密位),就可以推算出其距离远近。用伸直手臂之后竖起的大拇指所遮挡的范围的密位数是固定的,由此参考被测目标,就可以得到这个角度值。经过换算就可以得到距离的大致数据。

密位是一个圆平分为6000份每一份是一密位,还有伸出右手,闭上左眼,对准一个物体,让他恰好挨着你的大拇指左侧,手不要动换一下眼,你会发现物体产生跳动一段距离,根据物体目测宽度,跳动宽度,之比乘以50.为大约距离。还有经验积累,。密位计算也是实际物体在你手上相对应的一个密位数通过计算得出的大约距离。

理论上讲,将胳膊伸直,竖起拇指,根据眼睛到拇指的距离(约为臂长),拇指长和所测物的高进行相似计算。但实际上,使用这项技能时,基本是凭经验测距,要长时间练习才能熟练掌握。而且,要更正的是,手指测距多用于行军和炮兵定位粗测,且是每个士兵必修。而狙击手很少用手指测距,因为手指测距要将手臂伸直,很容易暴露自己,狙击手多直接用目测。手指测距一般能估测2-4公里(有明显地物,如房子,树等时适用),经验丰富的士兵误差不超过200米,目测一般用来估测一公里内距离,误差50米以里。

手指测距和目测都是需要长期练习的,还要了解一般地物的大小,及其在不同距离的视觉大小,能熟练利用距离已知的参照物进行比较等。如果你能刻苦练习,相信你一定会成功。

"大拇指测距法"是根据直角三角函数来测量的假设距离我们N米有一目标物,测量我们到目标物的距离:

1、水平端起我们的右手臂,右手握拳并立起大拇指

2、用右眼(左眼闭)将大拇指的左边与目标物重叠在一条直线上;

3、右手臂和大拇指不动,闭上右眼,再用左眼观测大拇指左边,会发现这个边线离开目标物右边一段距离;

4、估算这段距离(这个也可以测量),将这个距离×10,得数就是我们距离目标物的约略距离

另附中国和美国军队中常用肉眼测距法:

传说中国军队及警察中的狙击手一般用的测距法是跳眼法:右拳紧握,拇指向上,平伸右臂,闭上左眼,用右眼在拇指的一侧刚好观察到目标,这时保持姿势,闭上右眼,用左眼在拇指的同一侧观察到另一参照物---参照物和目标之间的距离乘以10,即为你和目标之间的实际距离。

美国军队的,有点相似:右拳紧握,拇指平放,平伸右臂,闭上左眼,用右眼在拇指的上侧刚好观察到目标,如果目标刚好一步跨过,则你和目标相距100码,如果目标刚好两步跨过,则你和目标相距200码………………

其它目测以物体为准的

目测距离,就是根据视力、目标清晰程度和实践经验来判定距离。目测距离的基本方法有比较法和判断法。

(l)比较法。就是把要测距离与某段已知距离(如电线杆距离、已测距离或自己熟悉的100米、200米、500米……等基本距离)相比较以求出距离。也可将要测的距离折半或分成若干段,分段比较,推算全长。

(2)判断法。就是根据目标的清晰程度来判断距离。在正常视力和气候条件下,可以分辨的目标距离可参考下表。但因各人的视力不同,使用此表时应根据自己的经验灵活掌握。

根据目标清晰程度判断距离表

距离(米)目 标 清 晰 程 度

100 人脸特征、手关节、步兵火器外部零件可见。

150~170 衣服的钮扣、水壶、装备的细小部分可见。

200 房顶上的瓦片、树叶、铁丝可见。

250~300 墙可见缝,瓦能数沟;人脸五官不清,衣服颜色可见。

400 人脸不清,头肩可分。

500 门见开闭,窗见格,瓦沟条分不清;人头肩分不清,男女可分。700 瓦面成丝,窗见衬;行人迈步分左右,手肘分不清。

1000 房屋轮廓清楚瓦片乱,门成方块窗衬消;人体上下一般粗。1500 瓦面平光,窗成洞;行人似蠕动,动作分不清;树干、电杆可见。

2000 窗是黑影,门成洞;人成小黑点,行动分不清。

3000 房屋模糊,门难辨,房上烟囱还可见。
【转自QQ空间】
### 单目相机深度估计算法的技术与方法 单目相机的深度估计是一个复杂而重要的课题,在许多应用领域具有重要意义,例如自动驾驶、机器人导航和增强现实等。以下是关于单目相机深度估计的一些关键技术与方法: #### 基于特征点匹配的深度估计 单目相机可以通过连续帧之间的特征点匹配来估算深度。具体来说,利用针孔模型假设,可以将像素坐标映射到归一化平面,并通过三角测量原理计算出对应点的空间位置[^2]。这种方法的关键在于检测并匹配两幅图像中的稳定特征点。 为了提高精度,通常会采用鲁棒性强的特征描述子(如SIFT、SURF或ORB),并通过RANSAC算法剔除误匹配项。随后,结合已知的相机内参矩阵和外参变换关系,可进一步解算出目标点的实际距离。 #### 利用光流场推导深度信息 除了静态场景下的特征点匹配之外,还可以借助光流技术追踪运动物体轨迹变化情况。通过对时间序列内的密集光流矢量进行分析,能够间接反映局部区域随摄像机移动产生的位移差异,进而推测其相对远近程度[^1]。 需要注意的是,由于缺乏绝对尺度约束条件,仅依靠单一视角获取的数据难以获得真实世界意义上的确切数值;因此往往还需要额外引入辅助手段比如IMU传感器融合或者设定固定参照物等方式加以校正补偿误差影响因素。 #### 学习型框架下的端到端预测方案 近年来随着机器学习特别是深度神经网络的发展迅猛势头强劲,在处理此类问题上也展现出了巨大潜力价值所在之处。一些研究工作尝试构建卷积神经网络(Convolutional Neural Networks, CNNs) 来直接从未标注过的自然影像资料里自动挖掘潜在规律模式用于生成相应的深度图谱表示形式[^3] 。 这类模型一般经过大量样本训练后具备较强泛化能力 ,即使面对未曾见过的新环境也能给出合理猜测结果 。 ```python import cv2 import numpy as np def estimate_depth(image_prev, image_curr, K): orb = cv2.ORB_create() kp1, des1 = orb.detectAndCompute(image_prev, None) kp2, des2 = orb.detectAndCompute(image_curr, None) bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) matches = bf.match(des1, des2) good_matches = sorted(matches, key=lambda x:x.distance)[:10] pts1 = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1,1,2) pts2 = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1,1,2) E, mask = cv2.findEssentialMat(pts1, pts2, K) _, R, t, _ = cv2.recoverPose(E, pts1, pts2, K) depth = [] for pt1, pt2 in zip(pts1, pts2): point_3d_homogeneous = cv2.triangulatePoints(K @ np.hstack((np.eye(3), np.zeros((3,1)))), K @ np.hstack((R,t)), pt1.T, pt2.T) point_3d = cv2.convertPointsFromHomogeneous(point_3d_homogeneous.T).flatten()[2] depth.append(abs(point_3d)) return depth ``` 上述代码片段展示了如何使用OpenCV库执行基本的单目深度估计流程,包括特征提取、匹配以及终的三角测距操作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Boss_Commander

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值