hdu2476String painter【区间dp】递推+递归的记忆化搜索

开始刷dp,图论的算法周末或者上课再学~这个题AC率那么高居然不会做==,太弱了

说题意:刷一下这个线段变成都是一个字母,再刷一下可以覆盖原来的,问最少刷几下由A串变成B串。开始就想到括号匹配了,但是纠结于怎样能取最优,那个题是从左端点+1到右端点找匹配取最优。这个题怎样能减少操作呢?我们想到如果某两个点的样式一致,那么他们可以先涂,后来的把中间那段覆盖上就可以满足要求了。既然是dp,就有状态转移,状态转移就是把一个区间分成两半,循环取最优,所以说,这个题就是套的括号匹配出的。

刚刚的设想是在源字符串为空串的情况下,但是很好的一点是源字符串如果和第二个字符串某一个字符相同呢?有可能就减少步数了是不是。

递归版:

/************
hdu2476
2016.3.10
46MS	1780K	1396B	C++
************/
#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int dp[110][110],f[110];
char str1[110],str2[110],len;
int min(int a,int b){if(a<b)return a;return b;}
void solve(int l,int r)
{
    if(dp[l][r]!=-1) return;
    solve(l+1,r);
    if(str2[l]==str2[r])
        dp[l][r]=dp[l+1][r];
    else dp[l][r]=dp[l+1][r]+1;
    for(int k=l+1;k<r;k++)
    {
        if(str2[l]==str2[k])
        {
            solve(l+1,k);
            solve(k+1,r);
            if(dp[l][r]>dp[l+1][k]+dp[k+1][r]||dp[l][r]<0)
            dp[l][r]=dp[l+1][k]+dp[k+1][r];
        }
    }
}
int main()
{
   // freopen("cin.txt","r",stdin);
    while(~scanf("%s%s",str1,str2))
    {
        len=strlen(str1);
        memset(dp,-1,sizeof(dp));
        memset(f,0x3f3f3f3f,sizeof(f));
        for(int i=0;i<len;i++) dp[i][i]=1;
        for(int i=0;i<len;i++)
            for(int j=i+1;j<len;j++)
                if(dp[i][j]==-1) solve(i,j);
        for(int i=0;i<len;i++) f[i]=dp[0][i];
        if(str1[0]==str2[0]) f[0]=0;
        else f[0]=1;
        for(int i=1;i<len;i++)
            for(int j=0;j<i;j++)
                if(str1[i]==str2[i])
                    f[i]=f[i-1];
                else
                    f[i]=min(f[i],f[j]+dp[j+1][i]);
        printf("%d\n",f[len-1]);
    }
    return 0;
}
递推版:
/***************
hdu2476
2016.3.10
31MS	1772K	1313 B	C++
***************/
#include <iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int dp[110][110],f[110];
char str1[110],str2[110];
int min(int a,int b){if(a<b)return a;return b;}
int main()
{
   // freopen("cin.txt","r",stdin);
    while(~scanf("%s",str1))
    {
        int len=strlen(str1);
        scanf("%s",str2);
        for(int i=0;i<len;i++)
            for(int j=i;j<len;j++)
                dp[i][j]=j-i+1;///
        for(int i=2;i<=len;i++)//len
        {
            for(int j=0;j+i-1<len;j++)//start
            {
                int e=j+i-1;//end
                dp[j][e]=dp[j+1][e]+1;
                for(int k=j+1;k<=e;k++)//mid
                    if(str2[j]==str2[k])
                        dp[j][e]=min(dp[j][e],dp[j+1][k]+dp[k+1][e]);
                   // else dp[j][e]=min(dp[j][e],dp[j][k]+dp[k+1][e]);
            }
        }
        for(int i=0;i<len;i++) f[i]=dp[0][i];
        if(str1[0]==str2[0]) f[0]=0;
        else f[0]=1;
        for(int i=0;i<len;i++)
            for(int j=i;j<len;j++)
                if(str1[j]==str2[j])
                    f[j]=f[j-1];
                else
                    f[j]=min(f[j],f[i]+dp[i+1][j]);
        printf("%d\n",f[len-1]);
    }
    return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值