tensorflow(五)---Word2vec

word2vec理解:


自 然语言不能直接处理,因此我们要把它们转换成可以处理的数字或者向量。传统的方法是one-hot-encoder,就是把所有的单词重新篇成一个很长的向量,但是他有一个不好的地方,一是编码是随机的,没有提供任何关联信息,而是,编码的向量就有一个是1,其他都为零,整个矩阵很稀疏,稀疏矩阵的训练效率很低,

这里使用向量表达可以有效的解决这些问题,一类是计数模型,他就是用一个滑动窗口,就算一个字周围出现其他字的次数,然后转换成矩阵。而是预测模型,他主要是用到非监督学习,用到深度学习去预测,然后把隐藏层的系数矩阵作为他的向量。


     Word2Vec即是一种计算非常高效的, 可以 从原始语料中学习字词空间向量的预测模型。它主要分为CBOW ( Continuous Bag of Words )和Skip-Gram 两种模式,其中CBOW是从原始语句(比如:中国的首都是————) 推测目标字词(比如:北京);而Skip-Gram则正好相反,它是从目标字词推测出原始语句, 其中 CBOW 对小 型数据 比较合适, 而Skip-Gram 在大型语料中表现得更好。

import collections
import math
import os
import random
import zipfile

import numpy as np
import urllib
import tensorflow as tf

# Step 1: Download the data.
# 步骤一: 下载数据
url = 'http://mattmahoney.net/dc/'

def maybe_download(filename, expected_bytes):
  """Download a file if not present, and make sure it's the right size."""
  # 如果不存在该文件的话就下载该文件,并确保它的大小正确
  if not os.path.exists(filename):
    filename, _ = urllib.request.urlretrieve(url + filename, filename)
  statinfo = os.stat(filename)
  if statinfo.st_size == expected_bytes:
    print('Found and verified', filename)
  else:
    print(statinfo.st_size)
    raise Exception(
        'Failed to verify ' + filename + '. Can you get to it with a browser?')
  return filename

filename = maybe_download('text8.zip', 31344016)

# Read the data into a list of strings.
# 把数据读取进一个字符串的列表
def read_data(filename):
  """Extract the first file enclosed in a zip file as a list of words"""
  with zipfile.ZipFile(filename) as f:
    data = tf.compat.as_str(f.read(f.namelist()[0])).split()
  return data

words = read_data(filename)
print('Data size', len(words))

# Step 2: Build the dictionary and replace rare words with UNK token.
# 步骤二: 构建一个词典,并把稀有词语用'UNK'代替
vocabulary_size = 50000

def build_dataset(words):
  # 得到一个单词->词频的列表,取词频最高的49999个
  count = [['UNK', -1]]
  count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
  #print(count[0])
  #print(count[1])
  #print(count[49999])
  '''
  i = 0
  for word,_ in count:
      if word == 'UNK':
          i = i + 1
  print('UNK', i, '个')
  '''
  # 得到一个单词->编号的词典
  dictionary = dict()
  #print(len(dictionary))
  for word, _ in count:
    dictionary[word] = len(dictionary)
  #print(len(dictionary))
  # 将全部单词转为编号,并统计UNK的词频
  data = list()
  unk_count = 0
  for word in words:
    if word in dictionary:
      index = dictionary[word]
    else:
      index = 0  # dictionary['UNK']
      unk_count += 1
    data.append(index)
  # 将UNK的词频赋值
  count[0][1] = unk_count
  # 得到一个编号->单词的词典
  reverse_dictionary = dict(zip(dictionary.values(), dictionary.keys()))
  # 返回转换后的编码列表、每个单词的频数统计、单词->编号的词典、编号->单词的词典
  return data, count, dictionary, reverse_dictionary

data, count, dictionary, reverse_dictionary = build_dataset(words)
#print(len(count))
#print(len(dictionary))
del words  # Hint to reduce memory. 删除原始单词列表以节约内存
# 输出最常见的5个单词及频数(包括UNK)
print('Most common words (+UNK)', count[:5])
# 输出前十个单词
print('Sample data', data[:10], [reverse_dictionary[i] for i in data[:10]])

data_index = 0

# Step 3: Function to generate a training batch for the skip-gram model.
'''
用来生成训练用的batch数据
batch_size为批量大小
skip_window为单词最远可以联系的距离
num_skips为对每个单词生成多少个样本,它不能大于skip_window值的两倍
并且batch_size必须是它的整数倍(确保每个batch包含了一个词汇对应的所有样本)
'''
def generate_batch(batch_size, num_skips, skip_window):
  global data_index
  #print(data_index)
  # 确保num_skips和batch_size满足前面提到的条件
  assert batch_size % num_skips == 0
  assert num_skips <= 2 * skip_window
  # 用np.ndarray将batch和labels初始化为数组
  batch = np.ndarray(shape=(batch_size), dtype=np.int32)
  labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32)
  # span为对某个单词创建相关样本时会使用到的单词数量
  span = 2 * skip_window + 1 # [ skip_window target skip_window ]
  # 创建一个最大容量为span的deque,即双向队列,在对deque使用append方法添加变量时,只会保留最后插入的span个变量
  buffer = collections.deque(maxlen=span)
  # 从data_index开始,把span个单词顺序读入buffer作为初始值
  for _ in range(span):
    buffer.append(data[data_index])
    data_index = (data_index + 1) % len(data)
  # 每次循环内对一个目标单词生成样本
  for i in range(batch_size // num_skips):
    target = skip_window  # target label at the center of the buffer
    # 生成样本时需要避免的单词列表,一开始包括目标单词
    targets_to_avoid = [ skip_window ]
    for j in range(num_skips):
      # 找到一个还没有使用过的语境单词
      while target in targets_to_avoid:
        target = random.randint(0, span - 1)
      # 因为这个语境单词被使用了,所以把它添加到targets_to_avoid中过滤
      targets_to_avoid.append(target)
      batch[i * num_skips + j] = buffer[skip_window]
      labels[i * num_skips + j, 0] = buffer[target]
    # 在对一个目标单词生成完所有样本后(num_skips个样本),我们再读入下一个单词(同时会抛弃掉buffer中第一个单词),即把滑窗向后移动一位
    buffer.append(data[data_index])
    data_index = (data_index + 1) % len(data)
  # 返回batch和labels
  return batch, labels

batch, labels = generate_batch(batch_size=8, num_skips=2, skip_window=1)
for i in range(8):
  print(batch[i], reverse_dictionary[batch[i]],
      '->', labels[i, 0], reverse_dictionary[labels[i, 0]])

# Step 4: Build and train a skip-gram model.
# 构建并训练一个skip-gram模型

batch_size = 128
# embedding_size即将单词转为稠密向量的维度,一般是50~1000这个范围内的值
embedding_size = 128  # Dimension of the embedding vector.
skip_window = 1       # How many words to consider left and right.
num_skips = 2         # How many times to reuse an input to generate a label.

# We pick a random validation set to sample nearest neighbors. Here we limit the
# validation samples to the words that have a low numeric ID, which by
# construction are also the most frequent.
# 指用来抽取的验证单词数
valid_size = 16     # Random set of words to evaluate similarity on.
# 指验证单词只从频数最高的100个单词中抽取
valid_window = 100  # Only pick dev samples in the head of the distribution.
# 随机抽取valid_size个验证单词
valid_examples = np.random.choice(valid_window, valid_size, replace=False)
# 训练时用来做负样本的噪声单词的数量
num_sampled = 64    # Number of negative examples to sample.

# 创建一个tf.Graph并设置为默认的graph
graph = tf.Graph()
with graph.as_default():

  # Input data.
  # 创建训练数据中的placeholder
  train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
  train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
  # 将valid_examples转为TensorFlow中的constant
  valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

  # Ops and variables pinned to the CPU because of missing GPU implementation
  # 限定所有计算在CPU上执行,因为可能在GPU上还没有实现
  with tf.device('/cpu:0'):
    # Look up embeddings for inputs.
    # 使用tf.random_uniform随机生成所有单词的词向量
    embeddings = tf.Variable(
        tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
    # 使用tf.nn.embedding_lookup查找输入train_inputs对应的向量embed
    embed = tf.nn.embedding_lookup(embeddings, train_inputs)

    # Construct the variables for the NCE loss
    # 使用tf.truncated_normal初始化NCE Loss中的权重参数nce_weights
    nce_weights = tf.Variable(
        tf.truncated_normal([vocabulary_size, embedding_size],
                            stddev=1.0 / math.sqrt(embedding_size)))
    # 将nce_biases初始化为0
    nce_biases = tf.Variable(tf.zeros([vocabulary_size]))

  # Compute the average NCE loss for the batch.
  # tf.nce_loss automatically draws a new sample of the negative labels each
  # time we evaluate the loss.
  # 使用tf.nn.nce_loss计算学习出的词向量embedding在训练数据上的loss,并使用tf.reduce_mean进行汇总
  loss = tf.reduce_mean(
      tf.nn.nce_loss(weights=nce_weights,
                     biases=nce_biases,
                     labels=train_labels,
                     inputs=embed,
                     num_sampled=num_sampled,
                     num_classes=vocabulary_size))

  # Construct the SGD optimizer using a learning rate of 1.0.
  # 定义优化器为SGD,且学习速率为1.0
  optimizer = tf.train.GradientDescentOptimizer(1.0).minimize(loss)

  # Compute the cosine similarity between minibatch examples and all embeddings.
  # 计算嵌入向量embeddings的L2范数norm
  norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims=True))
  # 将embeddings除以其L2范数得到标准化后的normalized_embeddings
  normalized_embeddings = embeddings / norm
  # 使用tf.nn.embedding_lookup查询验证单词的词向量
  valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings, valid_dataset)
  # 计算验证单词的词向量与词汇表中所有单词的相似性
  similarity = tf.matmul(valid_embeddings, normalized_embeddings, transpose_b=True)

  # Add variable initializer.
  init = tf.global_variables_initializer()

# Step 5: Begin training.
# 步骤5: 开始训练
# 定义最大的迭代次数为10万次
num_steps = 100001

with tf.Session(graph=graph) as session:
  # We must initialize all variables before we use them.
  # 执行参数初始化
  init.run()
  print("Initialized")

  average_loss = 0
  for step in range(num_steps):
    # 先使用generate_batch生成一个batch的inputs和labels数据,并用它们创建feed_dict
    batch_inputs, batch_labels = generate_batch(
        batch_size, num_skips, skip_window)
    feed_dict = {train_inputs : batch_inputs, train_labels : batch_labels}

    # We perform one update step by evaluating the optimizer op (including it
    # in the list of returned values for session.run()
    # 使用session.run()执行一次优化器运算(即一次参数更新)和损失计算,并将这一步训练的loss累积到average_loss
    _, loss_val = session.run([optimizer, loss], feed_dict=feed_dict)
    average_loss += loss_val

    if step % 2000 == 0:
      if step > 0:
        average_loss /= 2000
      # The average loss is an estimate of the loss over the last 2000 batches.
      # 之后每2000次循环,计算一下平均loss并显示出来
      print("Average loss at step ", step, ": ", average_loss)
      average_loss = 0

    # Note that this is expensive (~20% slowdown if computed every 500 steps)
    # 每10000次循环,计算一次验证单词与全部单词的相似度,并将与每个验证单词最相似的8个单词展示出来
    if step % 10000 == 0:
      sim = similarity.eval()
      for i in range(valid_size):
        valid_word = reverse_dictionary[valid_examples[i]]
        top_k = 8 # number of nearest neighbors
        nearest = (-sim[i, :]).argsort()[1:top_k+1]
        log_str = "Nearest to %s:" % valid_word
        for k in range(top_k):
          close_word = reverse_dictionary[nearest[k]]
          log_str = "%s %s," % (log_str, close_word)
        print(log_str)
  final_embeddings = normalized_embeddings.eval()

# Step 6: Visualize the embeddings.

def plot_with_labels(low_dim_embs, labels, filename='tsne.png'):
  assert low_dim_embs.shape[0] >= len(labels), "More labels than embeddings"
  plt.figure(figsize=(18, 18))  #in inches
  for i, label in enumerate(labels):
    x, y = low_dim_embs[i,:]
    plt.scatter(x, y)
    plt.annotate(label,
                 xy=(x, y),
                 xytext=(5, 2),
                 textcoords='offset points',
                 ha='right',
                 va='bottom')

  plt.savefig(filename)

  #%%
try:
  from sklearn.manifold import TSNE
  import matplotlib.pyplot as plt

  tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=5000)
  plot_only = 200
  low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only,:])
  labels = [reverse_dictionary[i] for i in range(plot_only)]
  plot_with_labels(low_dim_embs, labels)

except ImportError:
  print("Please install sklearn, matplotlib, and scipy to visualize embeddings.")


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值