自然语言处理入门 word2vec 使用tensorflow自己训练词向量

2 篇文章 0 订阅
1 篇文章 0 订阅

 

词向量是什么

  自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化。  NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representation,这种方法把每个词表示为一个很长的向量。这个向量的维度是词表大小,其中绝大多数元素为 0,只有一个维度的值为 1,这个维度就代表了当前的词。  举个栗子,  “话筒”表示为 [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 …]  “麦克”表示为 [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 …]  每个词都是茫茫 0 海中的一个 1。  这种 One-hot Representation 如果采用稀疏方式存储,会是非常的简洁:也就是给每个词分配一个数字 ID。比如刚才的例子中,话筒记为 3,麦克记为 8(假设从 0 开始记)。如果要编程实现的话,用 Hash 表给每个词分配一个编号就可以了。这么简洁的表示方法配合上最大熵、SVM、CRF 等等算法已经很好地完成了 NLP 领域的各种主流任务。  当然这种表示方法也存在一个重要的问题就是“词汇鸿沟”现象:任意两个词之间都是孤立的。光从这两个向量中看不出两个词是否有关系,哪怕是话筒和麦克这样的同义词也不能幸免于难。  Deep Learning 中一般用到的词向量并不是刚才提到的用 One-hot Representation 表示的那种很长很长的词向量,而是用 Distributed Representation(不知道这个应该怎么翻译,因为还存在一种叫“Distributional Representation”的表示方法,又是另一个不同的概念)表示的一种低维实数向量。这种向量一般长成这个样子:[0.792, −0.177, −0.107, 0.109, −0.542, …]。维度以 50 维和 100 维比较常见。这种向量的表示不是唯一的,后文会提到目前计算出这种向量的主流方法。  (个人认为)Distributed representation 最大的贡献就是让相关或者相似的词,在距离上更接近了。向量的距离可以用最传统的欧氏距离来衡量,也可以用 cos 夹角来衡量。用这种方式表示的向量,“麦克”和“话筒”的距离会远远小于“麦克”和“天气”。可能理想情况下“麦克”和“话筒”的表示应该是完全一样的,但是由于有些人会把英文名“迈克”也写成“麦克”,导致“麦克”一词带上了一些人名的语义,因此不会和“话筒”完全一致。

词向量的训练

  要介绍词向量是怎么训练得到的,就不得不提到语言模型。到目前为止我了解到的所有训练方法都是在训练语言模型的同时,顺便得到词向量的。  这也比较容易理解,要从一段无标注的自然文本中学习出一些东西,无非就是统计出词频、词的共现、词的搭配之类的信息。而要从自然文本中统计并建立一个语言模型,无疑是要求最为精确的一个任务(也不排除以后有人创造出更好更有用的方法)。既然构建语言模型这一任务要求这么高,其中必然也需要对语言进行更精细的统计和分析,同时也会需要更好的模型,更大的数据来支撑。目前最好的词向量都来自于此,也就不难理解了。  这里介绍的工作均为从大量未标注的普通文本数据中无监督地学习出词向量(语言模型本来就是基于这个想法而来的),可以猜测,如果用上了有标注的语料,训练词向量的方法肯定会更多。不过视目前的语料规模,还是使用未标注语料的方法靠谱一些。  词向量的训练最经典的有 3 个工作,C&W 2008、M&H 2008、Mikolov 2010。当然在说这些工作之前,不得不介绍一下这一系列中 Bengio 的经典之作。

 

话不多说以下是代码和资源

文件数据集https://download.csdn.net/download/wzdjsgf/10284177

import tensorflow as tf
import numpy as np
import math
import collections
import pickle as pkl
from pprint import pprint
#from pymongo import MongoClient
import re
import jieba
import os.path as path
import os

class word2vec():
    def __init__(self,
                 vocab_list=None,
                 embedding_size=200,
                 win_len=3, # 单边窗口长
                 num_sampled=1000,
                 learning_rate=1.0,
                 logdir='test/',
                 model_path= None
                 ):

        # 获得模型的基本参数
        self.batch_size     = None # 一批中数据个数, 目前是根据情况来的
        if model_path!=None:
            self.load_model(model_path)
        else:
            # model parameters
            assert type(vocab_list)==list
            self.vocab_list     = vocab_list
            self.vocab_size     = vocab_list.__len__()
            self.embedding_size = embedding_size
            self.win_len        = win_len
            self.num_sampled    = num_sampled
            self.learning_rate  = learning_rate
            self.logdir         = logdir

            self.word2id = {}   # word => id 的映射
            for i in range(self.vocab_size):
                self.word2id[self.vocab_list[i]] = i

            # train times
            self.train_words_num = 3000 # 训练的单词对数
            self.train_sents_num = 3000 # 训练的句子数
            self.train_times_num = 100 # 训练的次数(一次可以有多个句子)

            # train loss records
            self.train_loss_records = collections.deque(maxlen=10) # 保存最近10次的误差
            self.train_loss_k10 = 0

        self.build_graph()
        self.init_op()
        if model_path!=None:
            tf_model_path = os.path.join(model_path,'tf_vars')
            self.saver.restore(self.sess,tf_model_path)

    def init_op(self):
        self.sess = tf.Session(graph=self.graph)
        self.sess.run(self.init)
        self.summary_writer =tf.summary.FileWriter(self.logdir, self.sess.graph)

    def build_graph(self):
        self.graph = tf.Graph()
        with self.graph.as_default():
            self.train_inputs = tf.placeholder(tf.int32, shape=[self.batch_size])
            self.train_labels = tf.placeholder(tf.int32, shape=[self.batch_size, 1])
            self.embedding_dict = tf.Variable(
                tf.random_uniform([self.vocab_size,self.embedding_size],-1.0,1.0)
            )
            self.nce_weight = tf.Variable(tf.truncated_normal([self.vocab_size, self.embedding_size],
                                                              stddev=1.0/math.sqrt(self.embedding_size)))
            self.nce_biases = tf.Variable(tf.zeros([self.vocab_size]))

            # 将输入序列向量化
            embed = tf.nn.embedding_lookup(self.embedding_dict, self.train_inputs) # batch_size

            # 得到NCE损失
            self.loss = tf.reduce_mean(
                tf.nn.nce_loss(
                    weights = self.nce_weight,
                    biases = self.nce_biases,
                    labels = self.train_labels,
                    inputs = embed,
                    num_sampled = self.num_sampled,
                    num_classes = self.vocab_size
                )
            )

            # tensorboard 相关
            tf.summary.histogram('loss',self.loss)  # 让tensorflow记录参数

            # 根据 nce loss 来更新梯度和embedding
            self.train_op = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(self.loss)  # 训练操作

            # 计算与指定若干单词的相似度
            self.test_word_id = tf.placeholder(tf.int32,shape=[None])
            vec_l2_model = tf.sqrt(  # 求各词向量的L2模
                tf.reduce_sum(tf.square(self.embedding_dict),1,keep_dims=True)
            )

            avg_l2_model = tf.reduce_mean(vec_l2_model)
            tf.summary.histogram('avg_vec_model',avg_l2_model)

            self.normed_embedding = self.embedding_dict / vec_l2_model
            # self.embedding_dict = norm_vec # 对embedding向量正则化
            test_embed = tf.nn.embedding_lookup(self.normed_embedding, self.test_word_id)
            self.similarity = tf.matmul(test_embed, self.normed_embedding, transpose_b=True)

            # 变量初始化
            self.init = tf.global_variables_initializer()

            self.merged_summary_op = summary_op = tf.summary.merge_all()

            self.saver = tf.train.Saver()

    def train_by_sentence(self, input_sentence=[]):
        #  input_sentence: [sub_sent1, sub_sent2, ...]
        # 每个sub_sent是一个单词序列,例如['这次','大选','让']
        sent_num = input_sentence.__len__()
        batch_inputs = []
        batch_labels = []
        for sent in input_sentence:
            for i in range(sent.__len__()):
                start = max(0,i-self.win_len)
                end = min(sent.__len__(),i+self.win_len+1)
                for index in range(start,end):
                    if index == i:
                        continue
                    else:
                        input_id = self.word2id.get(sent[i])
                        label_id = self.word2id.get(sent[index])
                        if not (input_id and label_id):
                            continue
                        batch_inputs.append(input_id)
                        batch_labels.append(label_id)
        if len(batch_inputs)==0:
            return
        batch_inputs = np.array(batch_inputs,dtype=np.int32)
        batch_labels = np.array(batch_labels,dtype=np.int32)
        batch_labels = np.reshape(batch_labels,[batch_labels.__len__(),1])

        feed_dict = {
            self.train_inputs: batch_inputs,
            self.train_labels: batch_labels
        }
        _, loss_val, summary_str = self.sess.run([self.train_op,self.loss,self.merged_summary_op], feed_dict=feed_dict)

        # train loss
        self.train_loss_records.append(loss_val)
        # self.train_loss_k10 = sum(self.train_loss_records)/self.train_loss_records.__len__()
        self.train_loss_k10 = np.mean(self.train_loss_records)
        if self.train_sents_num % 1000 == 0 :
            self.summary_writer.add_summary(summary_str,self.train_sents_num)
            print("{a} sentences dealed, loss: {b}"
                  .format(a=self.train_sents_num,b=self.train_loss_k10))

        # train times
        self.train_words_num += batch_inputs.__len__()
        self.train_sents_num += input_sentence.__len__()
        self.train_times_num += 1

    def cal_similarity(self,test_word_id_list,top_k=10):
        sim_matrix = self.sess.run(self.similarity, feed_dict={self.test_word_id:test_word_id_list})
        sim_mean = np.mean(sim_matrix)
        sim_var = np.mean(np.square(sim_matrix-sim_mean))
        test_words = []
        near_words = []
        for i in range(test_word_id_list.__len__()):
            test_words.append(self.vocab_list[test_word_id_list[i]])
            nearst_id = (-sim_matrix[i,:]).argsort()[1:top_k+1]
            nearst_word = [self.vocab_list[x] for x in nearst_id]
            near_words.append(nearst_word)
        return test_words,near_words,sim_mean,sim_var

    def save_model(self, save_path):

        if os.path.isfile(save_path):
            raise RuntimeError('the save path should be a dir')
        if not os.path.exists(save_path):
            os.mkdir(save_path)

        # 记录模型各参数
        model = {}
        var_names = ['vocab_size',      # int       model parameters
                     'vocab_list',      # list
                     'learning_rate',   # int
                     'word2id',         # dict
                     'embedding_size',  # int
                     'logdir',          # str
                     'win_len',         # int
                     'num_sampled',     # int
                     'train_words_num', # int       train info
                     'train_sents_num', # int
                     'train_times_num', # int
                     'train_loss_records',  # int   train loss
                     'train_loss_k10',  # int
                     ]
        for var in var_names:
            model[var] = eval('self.'+var)

        param_path = os.path.join(save_path,'params.pkl')
        if os.path.exists(param_path):
            os.remove(param_path)
        with open(param_path,'wb') as f:
            pkl.dump(model,f)

        # 记录tf模型
        tf_path = os.path.join(save_path,'tf_vars')
        if os.path.exists(tf_path):
            os.remove(tf_path)
        self.saver.save(self.sess,tf_path)

    def load_model(self, model_path):
        if not os.path.exists(model_path):
            raise RuntimeError('file not exists')
        param_path = os.path.join(model_path,'params.pkl')
        with open(param_path,'rb') as f:
            model = pkl.load(f)
            self.vocab_list = model['vocab_list']
            self.vocab_size = model['vocab_size']
            self.logdir = model['logdir']
            self.word2id = model['word2id']
            self.embedding_size = model['embedding_size']
            self.learning_rate = model['learning_rate']
            self.win_len = model['win_len']
            self.num_sampled = model['num_sampled']
            self.train_words_num = model['train_words_num']
            self.train_sents_num = model['train_sents_num']
            self.train_times_num = model['train_times_num']
            self.train_loss_records = model['train_loss_records']
            self.train_loss_k10 = model['train_loss_k10']

if __name__=='__main__':

    # step 1 读取停用词
    stop_words = []
    with open('stop_words.txt',encoding= 'utf-8') as f:
        line = f.readline()
        while line:
            stop_words.append(line[:-1])
            line = f.readline()
    stop_words = set(stop_words)
    print('停用词读取完毕,共{n}个单词'.format(n=len(stop_words)))

    # step2 读取文本,预处理,分词,得到词典
    raw_word_list = []
    sentence_list = []
    with open('2800.txt',encoding='gbk') as f:
        line = f.readline()
        while line:
            while '\n' in line:
                line = line.replace('\n','')
            while ' ' in line:
                line = line.replace(' ','')
            if len(line)>0: # 如果句子非空
                raw_words = list(jieba.cut(line,cut_all=False))
                dealed_words = []
                for word in raw_words:
                    if word not in stop_words and word not in ['qingkan520','www','com','http']:
                        raw_word_list.append(word)
                        dealed_words.append(word)
                sentence_list.append(dealed_words)
            line = f.readline()
    word_count = collections.Counter(raw_word_list)
    print('文本中总共有{n1}个单词,不重复单词数{n2},选取前30000个单词进入词典'
          .format(n1=len(raw_word_list),n2=len(word_count)))
    word_count = word_count.most_common(30000)
    word_list = [x[0] for x in word_count]

    # 创建模型,训练
    w2v = word2vec(vocab_list=word_list,    # 词典集
                   embedding_size=200,
                   win_len=2,
                   learning_rate=1,
                   num_sampled=100,         # 负采样个数
                   logdir='test')       # tensorboard记录地址
    





    num_steps = 10000
    for i in range(num_steps):
        #print (i%len(sentence_list))
        sent = sentence_list[i%len(sentence_list)]
        w2v.train_by_sentence([sent])
    w2v.save_model('model')
    
    w2v.load_model('model') 
    test_word = ['天地','级别','世界']
    test_id = [word_list.index(x) for x in test_word]
    test_words,near_words,sim_mean,sim_var = w2v.cal_similarity(test_id)
    print (test_words,near_words,sim_mean,sim_var)

 


  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值