【数字图像处理学习笔记之二】数字图像滤波

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zhougynui/article/details/51782108

滤波

要构造一种有效抑制噪声的滤波器必须考虑两个基本问题:能有效地去除目标和背景中的噪声;同时,能很好地保护图像目标的形状、大小及特定的几何和拓扑结构特征。

1均值滤波器
1)算术均值滤波器
结果:模糊了结果,降低了噪声。
适用:高斯或均匀随机噪声。

2)几何均值滤波器
结果:和算术均值滤波器相比,丢失的图像细节更少。
适用:更适用高斯或均匀随机噪声。

3)谐波均值滤波器
结果:对于盐粒噪声(白色)效果较好,但不适用于胡椒噪声(黑色),善于处理高斯噪声那样的其他噪声。

4)逆谐波均值滤波器
结果:适合减少或在实际中消除椒盐噪声的影响,当Q值为正的时候消除胡椒噪声,当Q值为负的时候该滤波器消除盐粒噪声。但不能同时消除这两种噪声。
适用:脉冲噪声。
缺点:必须知道噪声是明噪声还是暗噪声。

2统计排序滤波器
1)中值滤波器
适用:存在单极或双极脉冲噪声的情况。

2)最大值滤波器
作用:发现图像中的最亮点,可以降低胡椒噪声。

3)最小值滤波器
作用:对最暗点有用,可以降低盐粒噪声。

4)中点滤波器
作用:结合统计排序和求平均,对于随机分布噪声工作的很好,如高斯噪声或均匀噪声。

5)修正的阿尔法均值滤波器
作用:在包括多种噪声的情况下很有用,例如高斯噪声和椒盐噪声混合。

3自适应滤波器
1)自适应局部降低噪声滤波器
作用:防止由于缺乏图像噪声方差知识而产生的无意义结果,适用均值和方差确定的加性高斯噪声。

2)自适应中值滤波器
作用:处理更大概率的脉冲噪声,同时平滑非脉冲噪声时保留细节,减少诸如物体边界粗化或细化等失真。

4频率域滤波器消除周期噪声
1)带阻滤波器
应用:在频率域噪声分量的一般位置近似已知的应用中消除噪声

2)带通滤波器
注意:不能直接在一张图片上使用带通滤波器,那样会消除太多的图像细节。
用处:屏蔽选中频段导致的结果,帮助屏蔽噪声模式。

3)陷阱滤波器
原理:阻止事先定义的中心频率的邻域内的频率。
作用:消除周期性噪声。

4)最佳陷阱滤波
作用:解决存在多种干扰分量的情况。

中值滤波:标准中值滤波算法的基本思想是将滤波窗口内的最大值和最小值均视为噪声,用滤波窗口内的中值代替窗口中心像素点的灰度,在一定程度上抑制了噪声。实际上在一定邻域范围内具有最大或最小灰度值这一特性的,除了噪声点,还包括图像中的边缘点、线性特征点等。中值滤波以此作为图像滤波依据,其滤波结果不可避免地会破坏图像的线段、锐角等信息。

阅读更多
换一批

没有更多推荐了,返回首页