01-神经网络和深度学习 - 第四周 - 搭建(多层神经网络 )-- 实现多层神经网络识别猫

1、搭建多层神经网络(识别猫)

(根据吴恩达deep learning(01-神经网络和深度学习--第四周))

代码部分:

import numpy as np
import h5py
import matplotlib.pyplot as plt
import scipy

from PIL import Image
from scipy import ndimage

##从dnn_utils.py程序中导入 sigmoid,sigmoid_backward,relu, relu_backward函数
from dnn_utils import sigmoid,sigmoid_backward,relu, relu_backward

from dnn_utils import sigmoid,sigmoid_backward,relu, relu_backward

上面代码最后一行为从dnn_utils.py代码中导入各个激活函数代码

具体dnn_utils.py代码:

#sigmoid function
def sigmoid(Z):
 
    A = 1/(1+np.exp(-Z))
    cache = Z
 
    return A,cache
 
#relu function
def relu(Z):
 
    A = np.maximum(0,Z)
 
    assert(A.shape == Z.shape)
 
    cache = Z
    return A,cache
 
def sigmoid_backward(dA,cache):
 
    Z = cache
    s = 1/(1+np.exp(-Z))
    dZ = dA * s * (1-s)
 
    assert (dZ.shape == Z.shape)
 
    return dZ
 
def relu_backward(dA,cache):
 
    Z = cache
    dZ = np.array(dA,copy=True)
 
    dZ[Z <= 0] = 0
 
    assert (dZ.shape == Z.shape)
 
    return dZ

剩余代码:


#读取数据集
def load_dataset():
    train_dataset = h5py.File('C:/Users/Administrator/datasets/train_catvnoncat.h5', "r")
    train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
    train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels

    test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")
    test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
    test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels

    classes = np.array(test_dataset["list_classes"][:]) # the list of classes
    
    train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
    test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
    
    return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes


##初始化多层网络参数的函数
#layers_dim:如果[2,4,1],表示2,4,1的2层网络,其中2为输入层,4为隐藏层,1为输出层
def initialize_parameters_deep(layers_dims):
    """
    此函数是为了初始化多层网络参数而使用的函数。
    参数:
        layers_dims - 包含我们网络中每个图层的节点数量的列表

    返回:
        parameters - 包含参数“W1”,“b1”,...,“WL”,“bL”的字典:
                     W1 - 权重矩阵,维度为(layers_dims [1],layers_dims [1-1])
                     bl - 偏向量,维度为(layers_dims [1],1)
    """
    #np.random.seed(3)
    parameters = {}
    L = len(layers_dims)

    for l in range(1,L):
        parameters["W" + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) / np.sqrt(layers_dims[l - 1])
        parameters["b" + str(l)] = np.zeros((layers_dims[l], 1))

        #确保我要的数据的格式是正确的
        assert(parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l-1]))
        assert(parameters["b" + str(l)].shape == (layers_dims[l], 1))

    return parameters

#前向传播,线性部分
def linear_forward(A,W,b):
    '''
     实现前向传播的线性部分。

    参数:
        A - 来自上一层(或输入数据)的激活,维度为(上一层的节点数量,示例的数量)
        W - 权重矩阵,numpy数组,维度为(当前图层的节点数量,前一图层的节点数量)
        b - 偏向量,numpy向量,维度为(当前图层节点数量,1)

    返回:
         Z - 激活功能的输入,也称为预激活参数
         cache - 一个包含“A”,“W”和“b”的字典,存储这些变量以有效地计算后向传递
    '''
    Z = np.dot(W,A) + b
    assert(Z.shape == (W.shape[0],A.shape[1]))
    cache = (A,W,b)
    
    return Z,cache


#线性激活部分
def linear_activation_forward(A_prev,W,b,activation):
    '''
    参数:
        A_prev  来自上一层(或输入层)的激活,维度为(上一层的节点数量,示列数)
        W - 权重矩阵,numpy数组,维度为(当前层的节点数量,前一层的大小)
        b - 偏向量,numpy阵列,维度为(当前层的节点数量,1)
        activation - 选择在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】

    返回:
        A - 激活函数的输出,也称为激活后的值
        cache - 一个包含“linear_cache”和“activation_cache”的字典,
        我们需要存储它以有效地计算后向传递
    
    '''
    if activation == "sigmoid":
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = sigmoid(Z)
 
    elif activation == 'relu':
        Z,linear_cache = linear_forward(A_prev,W,b)
        A,activation_cache = relu(Z)
        
    assert(A.shape == (W.shape[0],A_prev.shape[1]))
    cache = (linear_cache,activation_cache)
    
    return A,cache


#多层模型的前向传播计算模型
def L_model_forward(X,parameters):
    """
    实现[LINEAR-> RELU] *(L-1) - > LINEAR-> SIGMOID计算前向传播,也就是多层网络的前向传播,为后面每一层都执行LINEAR和ACTIVATION

    参数:
        X - 数据,numpy数组,维度为(输入节点数量,示例数)
        parameters - initialize_parameters_deep()的输出

    返回:
        AL - 最后的激活值
        caches - 包含以下内容的缓存列表:
                 linear_relu_forward()的每个cache(有L-1个,索引为从0到L-2)
                 linear_sigmoid_forward()的cache(只有一个,索引为L-1)
    """
    caches = [] #定义为一个数组
    A = X
    L = len(parameters) // 2
    for l in range(1,L):
        A_prev = A 
        A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)], parameters['b' + str(l)], "relu")
        caches.append(cache)

    AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], "sigmoid")
    caches.append(cache)

    assert(AL.shape == (1,X.shape[1]))

    return AL,caches


#计算成本
def compute_cost(AL,Y):
    '''
     实施等式(4)定义的成本函数。

    参数:
        AL - 与标签预测相对应的概率向量,维度为(1,示例数量)
        Y - 标签向量(例如:如果不是猫,则为0,如果是猫则为1),维度为(1,数量)

    返回:
        cost - 交叉熵成本

    '''
    m = Y.shape[1]
    
    #损失函数的计算公式
    #cost = -np.sum(np.multiply(np.log(AL),Y) + np.multiply(np.log(1-AL),1-Y)) / m 
    cost = -(np.dot(Y,np.log(AL).T) + np.dot((1-Y),np.log(1-AL).T))/m
    
    cost = np.squeeze(cost)                                                               
    assert(cost.shape == ())                                                           
    
    return cost


#反向传播

#计算反向传播部分
#线性部分
def linear_backward(dZ,cache):
    '''
    为单层实现反向传播的线性部分(第L层)
    
    参数:
         dZ - 相对于(当前第l层的)线性输出的成本梯度
         cache - 来自当前层前向传播的值的元组(A_prev,W,b)

    返回:
         dA_prev - 相对于激活(前一层l-1)的成本梯度,与A_prev维度相同
         dW - 相对于W(当前层l)的成本梯度,与W的维度相同
         db - 相对于b(当前层l)的成本梯度,与b维度相同
         cache - 一个包含“A”,“W”和“b”的字典,存储这些变量以有效地计算后向传递
    '''
    
    A_prev,W,b =  cache
    m = A_prev.shape[1]
    dW = np.dot(dZ,A_prev.T)/m
    db = np.sum(dZ,axis=1,keepdims=True)/m
    dA_prev = np.dot(W.T,dZ)
    
    assert (dA_prev.shape == A_prev.shape)
    assert (dW.shape == W.shape)
    assert (db.shape == b.shape)
    
    return dA_prev,dW,db

#实现反向线性激活函数部分
def linear_activation_backward(dA,cache,activation='relu'):
    '''
     实现LINEAR-> ACTIVATION层的后向传播。

    参数:
         dA - 当前层l的激活后的梯度值
         cache - 我们存储的用于有效计算反向传播的值的元组(值为linear_cache,activation_cache)
         activation - 要在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】
    返回:
         dA_prev - 相对于激活(前一层l-1)的成本梯度值,与A_prev维度相同
         dW - 相对于W(当前层l)的成本梯度值,与W的维度相同
         db - 相对于b(当前层l)的成本梯度值,与b的维度相同
    '''
    
    linear_cache,activation_cache = cache
    if activation == 'relu':
        dZ = relu_backward(dA,activation_cache)
        dA_prev,dW,db = linear_backward(dZ,linear_cache)
    elif activation == 'sigmoid':
        dZ = sigmoid_backward(dA,activation_cache)
        dA_prev,dW,db = linear_backward(dZ,linear_cache)
        
    return dA_prev,dW,db


#计算多层模型的反向传播
#构建多层模型反向传播
def L_model_backward(AL,Y,caches):
    '''
     对[LINEAR-> RELU] *(L-1) - > LINEAR - > SIGMOID组执行反向传播,就是多层网络的向后传播

     参数:
     AL - 概率向量,正向传播的输出(L_model_forward())
     Y - 标签向量(例如:如果不是猫,则为0,如果是猫则为1),维度为(1,数量)
     caches - 包含以下内容的cache列表:
                 linear_activation_forward("relu")的cache,不包含输出层
                 linear_activation_forward("sigmoid")的cache

    返回:
     grads - 具有梯度值的字典
              grads [“dA”+ str(l)] = ...
              grads [“dW”+ str(l)] = ...
              grads [“db”+ str(l)] = ...

    '''
    grads = {}
    L = len(caches)
    m = AL.shape[1]
    Y = Y.reshape(AL.shape)
    dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))

    current_cache = caches[L-1]
    grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, "sigmoid")

    for l in reversed(range(L-1)):
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 2)], current_cache, "relu")
        grads["dA" + str(l + 1)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dW_temp
        grads["db" + str(l + 1)] = db_temp

    return grads

#更新参数
def update_parameters(parameters, grads, learning_rate):
    """
    使用梯度下降更新参数

    参数:
     parameters - 包含你的参数的字典
     grads - 包含梯度值的字典,是L_model_backward的输出

    返回:
     parameters - 包含更新参数的字典
                   参数[“W”+ str(l)] = ...
                   参数[“b”+ str(l)] = ...
    """
    L = len(parameters) // 2 #整除
    for l in range(L):
        parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
        parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]

    return parameters


###搭建多层的神经网络
def L_layer_model(X,Y,layers_dims,learning_rate = 0.0035,num_iterations = 3000,print_cost = False,isPlot=True):
    '''
    实现一个L层神经网络:[LINEAR-> RELU] *(L-1) - > LINEAR-> SIGMOID。

    参数:
        X - 输入的数据,维度为(n_x,例子数)
        Y - 标签,向量,0为非猫,1为猫,维度为(1,数量)
        layers_dims - 层数的向量,维度为(n_y,n_h,···,n_h,n_y)
        learning_rate - 学习率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每100次打印一次
        isPlot - 是否绘制出误差值的图谱

    返回:
     parameters - 模型学习的参数。 然后他们可以用来预测。

    '''
    
    np.random.seed(1)
    costs = []
    
    parameters = initialize_parameters_deep(layers_dims)
    
    for i in range(0,num_iterations):
        AL , caches = L_model_forward(X,parameters)
        
        cost = compute_cost(AL,Y)
        
        grads = L_model_backward(AL,Y,caches)
        
        parameters = update_parameters(parameters,grads,learning_rate)
        
        #打印成本值
        if i%100 == 0:
            #记录成本
            costs.append(cost)
             #是否打印成本值
            if print_cost:
                print("第", i ,"次迭代,成本值为:" ,np.squeeze(cost))
    
    #迭代完成,根据条件绘制图
    if isPlot:
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
    return parameters


#准确率预测函数
def predict(X,y,parameters):
    """
    该函数用于预测L层神经网络的结果,也包含两层
    参数:
        X: 测试集
        y: 标签
        parameters 训练模型的参数
        
    返回:
    p 给定数据集的预测
    
    """
    
    m = X.shape[1]
    n = len(parameters) // 2  #神经网络的层数
    p = np.zeros((1,m))
    
    #根据参数前向传播
    probas,caches = L_model_forward(X,parameters)
    
    for i in range(0,probas.shape[1]):
        if probas[0,i] > 0.5:
            p[0,i] = 1
        else:
            p[0,i] = 0
    
    print("准确度为: "+str(float(np.sum((p == y))/m)))
    
    return p


##加载数据集    
train_x_orig, train_y, test_x_orig, test_y, classes = load_dataset()
    
#reshape训练集和测试集
train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T 
test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T

#标准化数据集,使输出限定在0和1之间
train_x = train_x_flatten / 255
test_x = test_x_flatten / 255


#加载完数据集,开始训练
layers_dims = [12288, 20, 7, 5, 1] #  5-layer model
parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True,isPlot=True)


#训练完成后查看准确率
pred_train = predict(train_x,train_y,parameters) #训练集的准确率
pred_test = predict(test_x,test_y,parameters)    #测试集的准确率



训练的具体过程(截图):

 

训练集预测猫的准确度:

测试集预测猫的准确度:

 

接下来自己用一张图片来测试这个模型能否预测出该图片是否为猫:

第一张用人的图片:(识别出来不是猫)

第二张用猫的图片:(识别出来是猫)

第三张图片:(没有识别出来是猫,实际图片是猫)

经过多次图片测试,当猫的头像较大时,能够识别,当图片中是猫的这个身体部分时,有时候识别出来的不是猫,所以模型的准确率又待于提高。

 

 

完整代码:

import numpy as np
import h5py
import matplotlib.pyplot as plt
import scipy

from PIL import Image
from scipy import ndimage

##从dnn_utils.py程序中导入 sigmoid,sigmoid_backward,relu, relu_backward函数
from dnn_utils import sigmoid,sigmoid_backward,relu, relu_backward

##从lr_utils.py程序中load_dataset导入数据集
##from lr_utils import load_dataset


#读取数据集
def load_dataset():
    train_dataset = h5py.File('C:/Users/Administrator/datasets/train_catvnoncat.h5', "r")
    train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
    train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels

    test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")
    test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
    test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels

    classes = np.array(test_dataset["list_classes"][:]) # the list of classes
    
    train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
    test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
    
    return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes


##初始化多层网络参数的函数
#layers_dim:如果[2,4,1],表示2,4,1的2层网络,其中2为输入层,4为隐藏层,1为输出层
def initialize_parameters_deep(layers_dims):
    """
    此函数是为了初始化多层网络参数而使用的函数。
    参数:
        layers_dims - 包含我们网络中每个图层的节点数量的列表

    返回:
        parameters - 包含参数“W1”,“b1”,...,“WL”,“bL”的字典:
                     W1 - 权重矩阵,维度为(layers_dims [1],layers_dims [1-1])
                     bl - 偏向量,维度为(layers_dims [1],1)
    """
    #np.random.seed(3)
    parameters = {}
    L = len(layers_dims)

    for l in range(1,L):
        parameters["W" + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) / np.sqrt(layers_dims[l - 1])
        parameters["b" + str(l)] = np.zeros((layers_dims[l], 1))

        #确保我要的数据的格式是正确的
        assert(parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l-1]))
        assert(parameters["b" + str(l)].shape == (layers_dims[l], 1))

    return parameters

#前向传播,线性部分
def linear_forward(A,W,b):
    '''
     实现前向传播的线性部分。

    参数:
        A - 来自上一层(或输入数据)的激活,维度为(上一层的节点数量,示例的数量)
        W - 权重矩阵,numpy数组,维度为(当前图层的节点数量,前一图层的节点数量)
        b - 偏向量,numpy向量,维度为(当前图层节点数量,1)

    返回:
         Z - 激活功能的输入,也称为预激活参数
         cache - 一个包含“A”,“W”和“b”的字典,存储这些变量以有效地计算后向传递
    '''
    Z = np.dot(W,A) + b
    assert(Z.shape == (W.shape[0],A.shape[1]))
    cache = (A,W,b)
    
    return Z,cache


#线性激活部分
def linear_activation_forward(A_prev,W,b,activation):
    '''
    参数:
        A_prev  来自上一层(或输入层)的激活,维度为(上一层的节点数量,示列数)
        W - 权重矩阵,numpy数组,维度为(当前层的节点数量,前一层的大小)
        b - 偏向量,numpy阵列,维度为(当前层的节点数量,1)
        activation - 选择在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】

    返回:
        A - 激活函数的输出,也称为激活后的值
        cache - 一个包含“linear_cache”和“activation_cache”的字典,
        我们需要存储它以有效地计算后向传递
    
    '''
    if activation == "sigmoid":
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = sigmoid(Z)
 
    elif activation == 'relu':
        Z,linear_cache = linear_forward(A_prev,W,b)
        A,activation_cache = relu(Z)
        
    assert(A.shape == (W.shape[0],A_prev.shape[1]))
    cache = (linear_cache,activation_cache)
    
    return A,cache


#多层模型的前向传播计算模型
def L_model_forward(X,parameters):
    """
    实现[LINEAR-> RELU] *(L-1) - > LINEAR-> SIGMOID计算前向传播,也就是多层网络的前向传播,为后面每一层都执行LINEAR和ACTIVATION

    参数:
        X - 数据,numpy数组,维度为(输入节点数量,示例数)
        parameters - initialize_parameters_deep()的输出

    返回:
        AL - 最后的激活值
        caches - 包含以下内容的缓存列表:
                 linear_relu_forward()的每个cache(有L-1个,索引为从0到L-2)
                 linear_sigmoid_forward()的cache(只有一个,索引为L-1)
    """
    caches = [] #定义为一个数组
    A = X
    L = len(parameters) // 2
    for l in range(1,L):
        A_prev = A 
        A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)], parameters['b' + str(l)], "relu")
        caches.append(cache)

    AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], "sigmoid")
    caches.append(cache)

    assert(AL.shape == (1,X.shape[1]))

    return AL,caches


#计算成本
def compute_cost(AL,Y):
    '''
     实施等式(4)定义的成本函数。

    参数:
        AL - 与标签预测相对应的概率向量,维度为(1,示例数量)
        Y - 标签向量(例如:如果不是猫,则为0,如果是猫则为1),维度为(1,数量)

    返回:
        cost - 交叉熵成本

    '''
    m = Y.shape[1]
    
    #损失函数的计算公式
    #cost = -np.sum(np.multiply(np.log(AL),Y) + np.multiply(np.log(1-AL),1-Y)) / m 
    cost = -(np.dot(Y,np.log(AL).T) + np.dot((1-Y),np.log(1-AL).T))/m
    
    cost = np.squeeze(cost)                                                               
    assert(cost.shape == ())                                                           
    
    return cost


#反向传播

#计算反向传播部分
#线性部分
def linear_backward(dZ,cache):
    '''
    为单层实现反向传播的线性部分(第L层)
    
    参数:
         dZ - 相对于(当前第l层的)线性输出的成本梯度
         cache - 来自当前层前向传播的值的元组(A_prev,W,b)

    返回:
         dA_prev - 相对于激活(前一层l-1)的成本梯度,与A_prev维度相同
         dW - 相对于W(当前层l)的成本梯度,与W的维度相同
         db - 相对于b(当前层l)的成本梯度,与b维度相同
         cache - 一个包含“A”,“W”和“b”的字典,存储这些变量以有效地计算后向传递
    '''
    
    A_prev,W,b =  cache
    m = A_prev.shape[1]
    dW = np.dot(dZ,A_prev.T)/m
    db = np.sum(dZ,axis=1,keepdims=True)/m
    dA_prev = np.dot(W.T,dZ)
    
    assert (dA_prev.shape == A_prev.shape)
    assert (dW.shape == W.shape)
    assert (db.shape == b.shape)
    
    return dA_prev,dW,db

#实现反向线性激活函数部分
def linear_activation_backward(dA,cache,activation='relu'):
    '''
     实现LINEAR-> ACTIVATION层的后向传播。

    参数:
         dA - 当前层l的激活后的梯度值
         cache - 我们存储的用于有效计算反向传播的值的元组(值为linear_cache,activation_cache)
         activation - 要在此层中使用的激活函数名,字符串类型,【"sigmoid" | "relu"】
    返回:
         dA_prev - 相对于激活(前一层l-1)的成本梯度值,与A_prev维度相同
         dW - 相对于W(当前层l)的成本梯度值,与W的维度相同
         db - 相对于b(当前层l)的成本梯度值,与b的维度相同
    '''
    
    linear_cache,activation_cache = cache
    if activation == 'relu':
        dZ = relu_backward(dA,activation_cache)
        dA_prev,dW,db = linear_backward(dZ,linear_cache)
    elif activation == 'sigmoid':
        dZ = sigmoid_backward(dA,activation_cache)
        dA_prev,dW,db = linear_backward(dZ,linear_cache)
        
    return dA_prev,dW,db


#计算多层模型的反向传播
#构建多层模型反向传播
def L_model_backward(AL,Y,caches):
    '''
     对[LINEAR-> RELU] *(L-1) - > LINEAR - > SIGMOID组执行反向传播,就是多层网络的向后传播

     参数:
     AL - 概率向量,正向传播的输出(L_model_forward())
     Y - 标签向量(例如:如果不是猫,则为0,如果是猫则为1),维度为(1,数量)
     caches - 包含以下内容的cache列表:
                 linear_activation_forward("relu")的cache,不包含输出层
                 linear_activation_forward("sigmoid")的cache

    返回:
     grads - 具有梯度值的字典
              grads [“dA”+ str(l)] = ...
              grads [“dW”+ str(l)] = ...
              grads [“db”+ str(l)] = ...

    '''
    grads = {}
    L = len(caches)
    m = AL.shape[1]
    Y = Y.reshape(AL.shape)
    dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))

    current_cache = caches[L-1]
    grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, "sigmoid")

    for l in reversed(range(L-1)):
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 2)], current_cache, "relu")
        grads["dA" + str(l + 1)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dW_temp
        grads["db" + str(l + 1)] = db_temp

    return grads

#更新参数
def update_parameters(parameters, grads, learning_rate):
    """
    使用梯度下降更新参数

    参数:
     parameters - 包含你的参数的字典
     grads - 包含梯度值的字典,是L_model_backward的输出

    返回:
     parameters - 包含更新参数的字典
                   参数[“W”+ str(l)] = ...
                   参数[“b”+ str(l)] = ...
    """
    L = len(parameters) // 2 #整除
    for l in range(L):
        parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
        parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]

    return parameters


###搭建多层的神经网络
def L_layer_model(X,Y,layers_dims,learning_rate = 0.0035,num_iterations = 3000,print_cost = False,isPlot=True):
    '''
    实现一个L层神经网络:[LINEAR-> RELU] *(L-1) - > LINEAR-> SIGMOID。

    参数:
        X - 输入的数据,维度为(n_x,例子数)
        Y - 标签,向量,0为非猫,1为猫,维度为(1,数量)
        layers_dims - 层数的向量,维度为(n_y,n_h,···,n_h,n_y)
        learning_rate - 学习率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每100次打印一次
        isPlot - 是否绘制出误差值的图谱

    返回:
     parameters - 模型学习的参数。 然后他们可以用来预测。

    '''
    
    np.random.seed(1)
    costs = []
    
    parameters = initialize_parameters_deep(layers_dims)
    
    for i in range(0,num_iterations):
        AL , caches = L_model_forward(X,parameters)
        
        cost = compute_cost(AL,Y)
        
        grads = L_model_backward(AL,Y,caches)
        
        parameters = update_parameters(parameters,grads,learning_rate)
        
        #打印成本值
        if i%100 == 0:
            #记录成本
            costs.append(cost)
             #是否打印成本值
            if print_cost:
                print("第", i ,"次迭代,成本值为:" ,np.squeeze(cost))
    
    #迭代完成,根据条件绘制图
    if isPlot:
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()
    return parameters


#准确率预测函数
def predict(X,y,parameters):
    """
    该函数用于预测L层神经网络的结果,也包含两层
    参数:
        X: 测试集
        y: 标签
        parameters 训练模型的参数
        
    返回:
    p 给定数据集的预测
    
    """
    
    m = X.shape[1]
    n = len(parameters) // 2  #神经网络的层数
    p = np.zeros((1,m))
    
    #根据参数前向传播
    probas,caches = L_model_forward(X,parameters)
    
    for i in range(0,probas.shape[1]):
        if probas[0,i] > 0.5:
            p[0,i] = 1
        else:
            p[0,i] = 0
    
    print("准确度为: "+str(float(np.sum((p == y))/m)))
    
    return p


##加载数据集    
train_x_orig, train_y, test_x_orig, test_y, classes = load_dataset()
    
#reshape训练集和测试集
train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T 
test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T

#标准化数据集,使输出限定在0和1之间
train_x = train_x_flatten / 255
test_x = test_x_flatten / 255


#加载完数据集,开始训练
layers_dims = [12288, 20, 7, 5, 1] #  5-layer model
#parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 2500, print_cost = True,isPlot=True)


#训练完成后查看准确率
pred_train = predict(train_x,train_y,parameters) #训练集的准确率
pred_test = predict(test_x,test_y,parameters)    #测试集的准确率

#测试一张图片是否为猫的图片
my_image = "D:/机器学习/猫/cat4.jpg"
my_label_y = [1]  #

num_px = train_x_orig.shape[1]

fname = "images/" + my_image
image = np.array(ndimage.imread(my_image,flatten=False))
my_image = scipy.misc.imresize(image, size=(num_px, num_px)).reshape((1, num_px * num_px * 3)).T

my_predicted_image = predict(my_image,my_label_y,parameters)

plt.imshow(image)
#plt.show()
print ("y = " + str(np.squeeze(my_predicted_image)) + ", your L-layer model predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") +  "\" picture.")

 

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值