知识图谱实战系列(笔记)

本文介绍了知识图谱在人工智能中的应用,如语义理解、智能搜索和问答系统。深入探讨了知识图谱的系统架构,包括知识获取、存储和表示。知识设计方法涵盖语义类型、关系设计和本体对象建模。重点讨论了RDBMS和图数据库(如Neo4j)的存储模型,并提供了项目实战和知识图谱获取的指导。
摘要由CSDN通过智能技术生成

第一章:

一、 知识图谱与人工智能

人工智能的业务架构

在这里插入图片描述

人工智能技术架构
在这里插入图片描述
智能人机对话业务模型
在这里插入图片描述

人工智能发展阶段
在这里插入图片描述

一、 知识图谱的典型应用

  • 在语义理解中的应用
    在这里插入图片描述

在传统搜索中仅仅通过匹配英达,儿子,无法正确区分开这三类问题,但是当引入实体关系的结构化数据后,就很容易区分。

  • 在智能搜索中的应用
    搜索结果包括该实体的相关属性
  • 智能问答
  • 辅助决策

一、 知识图谱的系统架构

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值