知识图谱实战系列(笔记)

第一章:

一、 知识图谱与人工智能

人工智能的业务架构

在这里插入图片描述

人工智能技术架构
在这里插入图片描述
智能人机对话业务模型
在这里插入图片描述

人工智能发展阶段
在这里插入图片描述

一、 知识图谱的典型应用

  • 在语义理解中的应用
    在这里插入图片描述

在传统搜索中仅仅通过匹配英达,儿子,无法正确区分开这三类问题,但是当引入实体关系的结构化数据后,就很容易区分。

  • 在智能搜索中的应用
    搜索结果包括该实体的相关属性
  • 智能问答
  • 辅助决策

一、 知识图谱的系统架构

在这里插入图片描述

  • 知识获取
  • 知识存储(RDF/neo4j)
  • 知识表示
  • 知识应用
    知识架构:语义类型设计,语义关系设计
    在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

第二章:知识设计方法

知识图谱基础

在这里插入图片描述
知识单元的组织
在这里插入图片描述

语义类型设计(知识建模)

设计语义类型可以参照同行业内,已经构建好的语义类型的划分。或者跨领域借鉴,复用(同知识领域)。如UMILS的
在这里插入图片描述

语义关系设计(知识建模)

  • 参照法:
    在这里插入图片描述

  • 通过业务流程来梳理抽象关系

本体对象设计(知识建模)

  • 由语义类型的模型,从最细粒度的语义类型去寻找本体对象
    语义建模工具:protege

第三章:知识存储

一、知识存储模型

  • RDBMS 关系型数据库(数据量小)
  • RDF 三元组(数据量小单网页模式)
  • Graph DBMS 图数据库(大体积)
    存储规则:对于不需要进行关系延申计算的数据不放入图谱,这部分数据可使用适应的存储并于知识图谱中实体做链接;对于结构固定,实体属性信息丰富的实体类,使用其他数据库存储更能体现优势。(不需要研究实体之间关系的数据,需要频繁计算的数据不适合用知识图谱存储。)

存储开销会逐渐增大,当属性比较多时,会产生大量的自连接,增加计算开销。
二、RDBMS 关系型数据库
1、对于关系数据库:三元组表
在这里插入图片描述

1、对于关系数据库:属性表
每一个属性做一张表
当不指定属性查询某个实体所有信息时要遍历所有的表,计算开销比较大
在这里插入图片描述
3、对于关系数据库:垂直分割
修改不方便
随谓语增加
在这里插入图片描述

三、RDF 三元组
在这里插入图片描述

三、图数据库:
在这里插入图片描述
3.1图数据库的选择:
RDF数据库使用排行
在这里插入图片描述
图数据库使用排行:
在这里插入图片描述
在这里插入图片描述

3.2 Neo4j配置

  • 配置java环境
  • 配置变量名:NEO4J_HOME 变量值:D:\Neo4j\neo4j-community-3.3.6
  • 配置path:D:\Neo4j\neo4j-community-3.3.6\bin\
  • 安装成服务:neo4j.bat install-service
  • neo4j start
  • neo4j stop
  • neo4j restart
  • neo4j status
    3.3 Neo4j操作
    shift+enter 换行
    Enter 执行
    :help 帮助
    :clear
    :play start欢迎界面
    创建节点
    ()
    (matrix)
    (:Movie)
    (matrix:Movie)
    (matrix:Movie {title: “The Matrix”})
    (matrix:Movie {title: “The Matrix”, released: 1997})
    创建关系
    –>
    -[role]->
    -[:ACTED_IN]->
    -[role:ACTED_IN]->
    -[role:ACTED_IN {roles: [“Neo”]}]->
    3.2 Neo4j数据库监控管理
    :sysinfo
    在这里插入图片描述
    数据备份

neo4j-admin.bat help
neo4j-admin.bat dump help
在这里插入图片描述

在这里插入图片描述
数据库删除

第四章:项目实战

一、自己动手开发聊天机器人

第五章:知识图谱获取

5.1知识图谱获取的方法

在这里插入图片描述
目前仅仅通过机器学习的方法构建的知识图谱是不完备的,必须引入人工。
5.2.国内外可用知识图谱
TCMLS中医学语言系统
在这里插入图片描述
注:PPT来源 《知识图谱实战开发案例剖析》(张子良)。

欢迎如人工智能学习圈:
在这里插入图片描述

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 2
    点赞
  • 46
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 15
    评论
知识图谱实战系列是一套基于Python编程语言的教程,旨在介绍如何使用Python来构建和应用知识图谱知识图谱是一种将知识组织成一张关系图的方法,通过节点和边的表示,来描述知识之间的关联和属性。 在知识图谱实战系列中,我们将学习如何使用Python编程语言来创建和管理知识图谱。首先,我们将介绍如何使用常见的图数据库(如Neo4j)来存储和查询知识图谱数据。图数据库是一种专门用于存储和处理图结构数据的数据库系统,它提供了高效的图查询和图分析功能。 其次,我们将介绍如何使用Python的图谱处理库(如NetworkX)来进行知识图谱的分析和可视化。图谱处理库提供了一系列功能,如图网络的构建、节点和边的操作、图算法的应用等,可以帮助我们更方便地处理和分析知识图谱数据。 在实战练习中,我们将以真实场景为例,通过Python编程来构建和应用知识图谱。例如,在电影领域,我们可以使用Python爬虫从互联网上获取电影信息,并将其组织成一个知识图谱。然后,我们可以使用图数据库来存储和查询这些电影数据,使用图谱处理库对电影数据进行分析和可视化。 通过知识图谱实战系列的学习,我们可以了解知识图谱的基本概念和原理,学会使用Python编程语言来构建和应用知识图谱,从而更好地组织和利用知识。无论是在学术研究、企业应用还是个人项目中,知识图谱都具有重要的价值和应用前景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kaiyin_hzau

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值