第一章:
一、 知识图谱与人工智能
人工智能的业务架构
人工智能技术架构
智能人机对话业务模型
人工智能发展阶段
一、 知识图谱的典型应用
- 在语义理解中的应用
在传统搜索中仅仅通过匹配英达,儿子,无法正确区分开这三类问题,但是当引入实体关系的结构化数据后,就很容易区分。
- 在智能搜索中的应用
搜索结果包括该实体的相关属性 - 智能问答
- 辅助决策
一、 知识图谱的系统架构
- 知识获取
- 知识存储(RDF/neo4j)
- 知识表示
- 知识应用
知识架构:语义类型设计,语义关系设计
第二章:知识设计方法
知识图谱基础
知识单元的组织
语义类型设计(知识建模)
设计语义类型可以参照同行业内,已经构建好的语义类型的划分。或者跨领域借鉴,复用(同知识领域)。如UMILS的
语义关系设计(知识建模)
-
参照法:
-
通过业务流程来梳理抽象关系
本体对象设计(知识建模)
- 由语义类型的模型,从最细粒度的语义类型去寻找本体对象
语义建模工具:protege
第三章:知识存储
一、知识存储模型
- RDBMS 关系型数据库(数据量小)
- RDF 三元组(数据量小单网页模式)
- Graph DBMS 图数据库(大体积)
存储规则:对于不需要进行关系延申计算的数据不放入图谱,这部分数据可使用适应的存储并于知识图谱中实体做链接;对于结构固定,实体属性信息丰富的实体类,使用其他数据库存储更能体现优势。(不需要研究实体之间关系的数据,需要频繁计算的数据不适合用知识图谱存储。)
存储开销会逐渐增大,当属性比较多时,会产生大量的自连接,增加计算开销。
二、RDBMS 关系型数据库
1、对于关系数据库:三元组表
1、对于关系数据库:属性表
每一个属性做一张表
当不指定属性查询某个实体所有信息时要遍历所有的表,计算开销比较大
3、对于关系数据库:垂直分割
修改不方便
随谓语增加
三、RDF 三元组
三、图数据库:
3.1图数据库的选择:
RDF数据库使用排行
图数据库使用排行:
3.2 Neo4j配置
- 配置java环境
- 配置变量名:NEO4J_HOME 变量值:D:\Neo4j\neo4j-community-3.3.6
- 配置path:D:\Neo4j\neo4j-community-3.3.6\bin\
- 安装成服务:neo4j.bat install-service
- neo4j start
- neo4j stop
- neo4j restart
- neo4j status
3.3 Neo4j操作
shift+enter 换行
Enter 执行
:help 帮助
:clear
:play start欢迎界面
创建节点
()
(matrix)
(:Movie)
(matrix:Movie)
(matrix:Movie {title: “The Matrix”})
(matrix:Movie {title: “The Matrix”, released: 1997})
创建关系
–>
-[role]->
-[:ACTED_IN]->
-[role:ACTED_IN]->
-[role:ACTED_IN {roles: [“Neo”]}]->
3.2 Neo4j数据库监控管理
:sysinfo
数据备份
neo4j-admin.bat help
neo4j-admin.bat dump help
数据库删除
第四章:项目实战
一、自己动手开发聊天机器人
第五章:知识图谱获取
5.1知识图谱获取的方法
目前仅仅通过机器学习的方法构建的知识图谱是不完备的,必须引入人工。
5.2.国内外可用知识图谱
TCMLS中医学语言系统
注:PPT来源 《知识图谱实战开发案例剖析》(张子良)。
欢迎如人工智能学习圈: