算法的鲁棒性

     在机器学习领域,总是看到“算法的鲁棒性”这类字眼,比如这句--L1范数比L2范数鲁棒。

    “鲁棒”的英文是robustness,其是一个特别大的研究领域。最权威的著作当属稳健统计的2本厚书 文献[1]和[2],有志之士可作研究。

      本人的硕士论文对算法鲁棒性有所涉及,并偏向聚类算法的鲁棒性,但也只是学到了一点皮毛,考虑到网上的相关博文极少,故在此记录一番。


1.   Huber从稳健统计的角度系统地给出了鲁棒性3个层面的概念:

        一是模型具有较高的精度或有效性,这也是对于机器学习中所有学习模型的基本要求;

        二是对于模型假设出现的较小偏差,只能对算法性能产生较小的影响;   

               主要是:噪声(noise)

        三是对于模型假设出现的较大偏差,不可对算法性能产生“灾难性”的影响。  

              主要是:离群点(outlier)

2.   聚类算法的鲁棒性:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值