
机器学习
文章平均质量分 75
Lucky和小白
搬砖工,ML学渣
展开
-
[机器学习]范数 常用参考汇集
每次看到范数总感觉似曾相识又解释不清,鉴于上周苏宁面试被问了L1范数和L2范数,回答不清,故决定好好梳理一通。1. 知乎大神,理解的角度1)作者:Faaany链接:https://www.zhihu.com/question/21868680/answer/136376374来源:知乎范数的本质是距离,存在的意义是为了实现比较。范数其实是一个函数,它把不能比较的向量转换成可以比较的实...原创 2017-09-13 14:44:06 · 918 阅读 · 0 评论 -
[机器学习][源码]机器学习实战ch5 Logistic回归
把代码保存于此,python3实现,详解就参考《机器学习实战》(Peter Harrington)啦...logRegres.py : #http://blog.csdn.net/sinat_17196995/article/details/57418519from numpy import *# 5-1 gradient ascent algorithmdef loadDataSet(): da...原创 2018-03-09 20:48:04 · 354 阅读 · 0 评论 -
[机器学习][源码]机器学习实战ch6 SVM
把代码保存于此,python3实现,详解就参考《机器学习实战》(Peter Harrington)啦...1. svmMLiA.py : '''ref:http://blog.csdn.net/puqutogether/article/details/44565093'''from numpy import *# 6-1def loadDataSet(filename): dataMat=[];l...原创 2018-03-09 20:52:02 · 514 阅读 · 0 评论 -
[机器学习][源码]机器学习实战ch7 AdaBoost
把代码保存于此,python3实现,详解就参考《机器学习实战》(Peter Harrington)啦...boost.py : from numpy import *def loadSimpData(): datMat=matrix([[1.,2.1], [2.,1.1], [1.3,1.], [1.,1.], [2.,1.] ]) classLabels=[1.0,1.0,-1.0,-1...原创 2018-03-09 20:53:39 · 452 阅读 · 1 评论 -
[机器学习][源码]机器学习实战ch8 回归
把代码保存于此,python3实现,详解就参考《机器学习实战》(Peter Harrington)啦...regression.py : from numpy import *# 8-1 线性回归def loadDataSet(filename): numFeat=len(open(filename).readline().split('\t'))-1 #number of features of...原创 2018-03-09 20:55:06 · 524 阅读 · 0 评论 -
[机器学习][源码]机器学习实战ch9 CART
把代码保存于此,python3实现,详解就参考《机器学习实战》(Peter Harrington)啦...1. regTrees.py :#CART regression tree# python3修改了部分代码 http://blog.csdn.net/sinat_17196995/article/details/69621687# 9-1from numpy import *# 获取数据集de...原创 2018-03-09 20:58:22 · 611 阅读 · 0 评论 -
[机器学习][源码]机器学习实战ch10 kmeans
把代码保存于此,python3实现,详解就参考《机器学习实战》(Peter Harrington)啦...kMeans.py# 10-1 聚类支持函数from numpy import *def loadDataSet(fileName): #general function to parse tab -delimited floats dataMat = [] ...原创 2018-03-09 20:59:49 · 443 阅读 · 0 评论 -
[R][源码]LDA文本模型(初级1)
Latent Dirichlet Allocation(LDA)是一个在文本建模中很著名的模型,可以用于浅层语义分析,在文本聚类中是一个很有用的模型。即在仅观察到文档词语的条件下,挖掘出文本所属的主题等一系列信息。要求:读取属于2个主题的多篇文章,进行相关分析。一、 数据本实验数据取自30篇论文的摘要部分,这些论文的主题为co-clustering或者CCA。用这30个txt文件...原创 2018-03-02 19:43:26 · 1235 阅读 · 0 评论 -
[R][源码]EM算法实现基于高斯混合模型(GMM)的聚类
要求:用EM算法实现基于GMM的聚类算法。一、实验数据参考[1] 3.3.2章节。由两个二维高斯分布混合生成1000个数据,混合系数分别是0.4、0.6,均值和方差如下:mu1=[-2,-2]sigma1=[1.2, 0.5, 0.5, 1]mean2=[2,2]sigma2=[1.5, 0.7, 0.7, 1]二、实验过程、结果与分析2.1 数据散点图 2.2 用mclust包实现R语言自带mc...原创 2018-03-01 21:12:46 · 9203 阅读 · 1 评论 -
[R][源码]利用交叉验证选择最优聚簇数目
交叉验证主要用于建模应用中,即在给定的建模样本中,拿出大部分样本进行训练,留小部分样本在刚建立的模型上进行测试。在运行kmeans等聚类算法时需要设定聚类数目,但聚类数目一般难以预测,交叉验证可以解决这一问题。一、 数据选取R语言自带的iris数据集,共3个聚类。数据共150个,每个样本有4个特征。由于数据带有标号,故删去Species列。二、 实验过程、结果与...原创 2018-03-02 19:47:32 · 1554 阅读 · 0 评论 -
[机器学习][源码]用单层感知机对字母L和I分类
研一机器学习课程,外教布置的作业。当时写代码、实验结果分析的水平真是“青涩”啊......一. 题目:Implement a classifier for characters L and I using the discrete perceptron learning algorithm. You may use any implementation.Specifications:· ...原创 2018-03-10 21:10:29 · 370 阅读 · 0 评论 -
[python]机器学习实战
相关博客和代码很多很多,本文主要记录 学习过程中遇到的问题 + 可供参考的链接 和 博客地址。1. 书上用的python 2.7,我用的python 3.6,导致代码不可照搬。作为一个python小白,只能去搜寻众网友的3.6版本代码啦。2. source code for book 下载地址 https://github.com/EddieXin/machinelearningi原创 2017-12-01 14:54:45 · 655 阅读 · 0 评论 -
[R][源码]KNN算法
knn算法(最近邻算法)是一种用于分类和回归的非参数统计方法。knn算法的核心思想是“近朱者赤,近墨者黑”,本实验用knn算法实现了分类(某种意义上的聚类,如下图)。一、 算法描述: 假设共有N个数据点,度量任意两个数据点之间的距离,构成N*N距离矩阵。 数据划分为训练集和测试集,训练集数据标号已知,测试集数据标号未知。 对测试集中任一数据点,由距离矩阵求出训练集中(邻居取自已经正确...原创 2018-03-02 19:53:13 · 1979 阅读 · 0 评论 -
[机器学习]阅读随笔 Bandit算法
每天学习一点点,做个小笔记或随想。1. 专治选择综合征-Bandit算法 来自(2018.1.2 陈开江 AI科技大本营 )1)Bandit来自 K摇臂赌博机K摇臂赌博机 -- 《机器学习》周志华 ch16.2,属于强化学习(1)Exploration-Exploitatin dilemma仅探索:仅获知每个摇臂的期望奖赏仅利用:仅为执行奖赏最大的动作(2)对 探索-利用 进行折中1是 e-贪心...原创 2018-01-04 08:13:45 · 889 阅读 · 0 评论 -
扩散映射
扩散映射(diffusion map)本文出发点: 在论文<constraints as features>中,将 不连约束 的添加 转为 特征空间的增广,用到了样本在扩散空间的分布,而扩散空间的分布是由扩散映射得到的。注:蓝色是我的想法,不一定正确扩散映射是一种降维方法1. 其通过 整合数据的局部几何关系 揭示 数据集在不同尺度的几何结构。2. 与PCA (principal com...原创 2018-03-27 19:25:33 · 8926 阅读 · 0 评论 -
MDS(multi-dimensional scaling)
在仅知道 样本距离矩阵 的情况下,如何恢复 样本的相对位置?用MDS方法解决此问题!1. 推导及MDS过程,参看链接:MDS方法的推导特征空间恢复到几维都可以。2. MDS是一种降维方法:MDS致力于将数据嵌入到一个低维空间,在该低维空间中,样本对之间的距离得到保持。[1]【参考】[1] De la Porte J, Herbst B M, Hereman W, et al. An introdu...原创 2018-03-27 19:38:56 · 1561 阅读 · 0 评论 -
[机器学习][源码]机器学习实战ch4 朴素贝叶斯
把代码保存于此,python3实现,详解就参考《机器学习实战》(Peter Harrington)啦...bayes.py:#refer: http://blog.csdn.net/sinat_17196995/article/details/57412474from numpy import *#4-1#dataset,每行是一个文档def loadDataSet(): postingLi...原创 2018-03-09 20:46:37 · 326 阅读 · 0 评论 -
[机器学习][源码]机器学习实战ch2 KNN
把代码保存于此,python3实现,详解就参考《机器学习实战》(Peter Harrington)啦...knn.py : # 详细的带注释程序可参考:http://blog.csdn.net/sinat_17196995/article/details/55052174from numpy import *import operator#----------------------------d...原创 2018-03-09 20:38:49 · 252 阅读 · 0 评论 -
[机器学习][源码]机器学习实战ch3 决策树
把代码保存于此,python3实现,详解就参考《机器学习实战》(Peter Harrington)啦...1. trees.py#详细注释: https://www.cnblogs.com/zy230530/p/6813250.html# 3-1from math import logdef calcShannonEnt(dataSet): numEntries=len(dataSet) labe...原创 2018-03-09 20:43:49 · 517 阅读 · 0 评论 -
[机器学习]熵
熵(entropy)1. 为何总结 这周三开组会,师兄所做报告的公式中涉及熵的概念。 老板一句话从直觉意义上解释熵: 离散分布中,能量仅仅集中在少数点上,熵就低。2. 熵的物理意义 来源:wikipedia 1)化学及热力学 当总体的熵增加,其做功能力也下降,熵的量度正是能量退化的指标。熵亦被用于计算一个系统中的失序现象,也就是计算该系统混乱的程度...原创 2017-11-10 14:07:19 · 382 阅读 · 0 评论 -
[机器学习]浅谈人工智能--笔记
浅谈人工智能:现状、任务、构架与统一 | 正本清源 2017-11-02 朱松纯(说明: 老板极力推荐我们阅读这篇综述性的文章,朱老师写的妙趣横生,几个触动点记录如下)1.人工智能学科,归纳为六个,当成战国七雄,把其中2雄合并成(5): (1)计算机视觉(暂且把模式识别,图像处理等问题归入其中)、 (2)自然语言理解与交流(暂且把语音识别、合成归入其中,包括对话)、 (3)认知与推理(包含各种物理...原创 2017-11-10 14:17:10 · 1294 阅读 · 0 评论 -
[机器学习]最大似然估计
ref1.《模式分类》(Richard O. Duda)chapter31. 最大似然估计: 把待估计参数看作是确定性的量,只是取值未知; 最佳估计:使得 产生已观测样本(训练样本)的概率为最大 的值 。过程:样本集D中的样本独立同分布,参数 theta,求使得p(D|theta)的值最大的theta,p(D|theta)看作是关于theta的函数,似然函数 l(theta)=ln ...原创 2017-11-14 14:25:01 · 742 阅读 · 0 评论 -
[机器学习]贝叶斯估计
ref: 《模式分类》(Richard O. Duda)chapter 31. 贝叶斯估计: 把待估计的参数看成是符合某种先验概率分布的随机变量。 最佳估计:对样本进行观测的过程,就是把先验概率密度转化为后验概率密度, 这样就利用样本的信息修正了对参数的初始估计值。2.具体推导过程贝叶斯估计的核心:由先验概率、类条件概率密度,计算后验概率。已有样本集...原创 2017-11-16 21:16:48 · 1378 阅读 · 0 评论 -
[机器学习]PCA(principal component analysis)
PCA(主成分分析)属于无监督学习的范畴,是一种降维方法。PCA选取包含信息量最多的方向对数据进行投影。1. 推导PCA的2种方法(需回顾)1)从重建误差最小化的角度2)从方差最大化的角度(详细推导见机器学习圣经 PRML )。2. 求解方法求解特征值和特征向量的方法分为 一般方法 和 使用技巧的方法1)普通方法 直接 特征分解,求特征值和特征向量。2)技巧--svd分解3. 鲁棒PCA 我的硕士...原创 2017-11-27 17:23:21 · 1966 阅读 · 0 评论 -
[机器学习]QCQP 和 拉格朗日乘子法
前言:面试被问到:QCQP问题如何求解,答:先转换成lagrange乘子法,被追问lagrange乘子法的原理是什么?尴尬了,答不出...... 不懂处待续1. 如何理解lagrange乘子法下面2个解释相似,直观,均来自知乎 https://www.zhihu.com/question/38586401本质就是梯度要相同1)拉格朗日乘数法(Lagrange multiplier)有很直观的几何意...原创 2017-12-01 19:57:29 · 11205 阅读 · 0 评论 -
[机器学习]EM+probabilistic clustering
前言: EM算法总是跟高斯混合模型联系在一起,再延伸到最近所看论文有所涉及, 唉,貌似总是有点晕,故而总结一下。1. EM算法参考:斯坦福大学机器学习课程课件(吴恩达)notes 8.pdf推导过程特别具体,基于最大似然估计、Jensen不等式。重点关注公式(2)(3),将expection最大化,很好地解释了maximize expection--EM 2. 高斯混合聚类1)...原创 2017-11-12 17:49:29 · 863 阅读 · 0 评论 -
[机器学习]Lasso回归的优化
1. 回顾 回顾线性回归和ridge回归,均可用梯度下降+最小二乘法优化,详见[1]的1,2部分,优化简单。 此外,关于Lasso、L2正则化等的解释 参见本人的另一篇博文,但未涉及优化。2. Lasso的优化目标表达式: (a) Lasso回归有时也叫做线性回归的L1正则化,求解的主要问题是损失函数不连续可导,故最小二乘、梯度下降等方法均失效。那么,如何优化呢?1) 坐标下降法(coordin...原创 2018-02-01 22:53:20 · 9332 阅读 · 0 评论 -
deeplearning.ai第一课
总述:1. 课程+课件,学习位置: -- 1)网易云课程,2) coursera(若视频无法加载 或者 测验区图片不显示,解决方法 https://jingyan.baidu.com/article/6f2f55a14059eeb5b93e6cab.html)2. 作业 -- 在coursera上查看作业+写作业,但是不能提交(因为没有缴费,只是注册了couresera的帐号);原创 2017-11-29 14:53:56 · 1000 阅读 · 1 评论 -
[机器学习]L21,L2,核范数
前言:因为目前所做的鲁棒凸聚类用到了L1范数,故上一篇文章Lasso重点关注了lasso及其与岭回归的比较,此文将整合各种范数。1. 范数的公式 ref[1]范数就是关于向量或者矩阵的函数,得到的是一个数值。(大致来自知乎)1)向量范数1-范数:,即向量元素绝对值之和。2-范数:,Euclid范数(欧几里得范数,常用计算向量长度),即向量元素绝对值的平方和再开方。∞-范数:,即所有向量元素绝对值...原创 2017-11-24 12:17:17 · 25204 阅读 · 0 评论 -
[机器学习]Lasso,L1范数,及其鲁棒性
前言:本文包括以下几个方面,1. 介绍Lasso,从最初提出Lasso的论文出发,注重动机;2. L1和L2范数的比较,注重L1的稀疏性及鲁棒性;3. 从误差建模的角度理解L1范数1. lasso最早提出Lasso的文章,文献[1],已被引用n多次。注:对于不晓得怎么翻译的英文,直接搬来。1) 文献[1]的动机:在监督学习中,ordinary least squares(OLS) estimate...原创 2017-11-23 15:30:08 · 7367 阅读 · 0 评论 -
[机器学习]梯度下降+牛顿法
梯度下降+牛顿法 看似简单,但了解它的背后推导吗?1. ref1: 《模式分类》(Richard O.Duda) ch5.4.2 直接给出了梯度下降法的公式(12) 和 算法1; 再将 梯度下降法式子(12) 带入 泰勒二阶展开式(13) -> 给出 计算步长 的一种方法,见page185式(14); 牛顿法...原创 2017-11-18 14:03:59 · 360 阅读 · 0 评论 -
[机器学习]提升方法boosting
前言(总结本文的原因):1.之前听闻阿里面试官很喜欢问gbdt,gradient boosting descent tree2. 统计学课学了boosting和bagging,总搞不清2个单词的区别一、boosting 参考[1] chap8.11. 背景及定义:在PAC(probably approximately correct)学习框架中,一个概念是强可学习的充要条件是这个概念是弱可学习的...原创 2018-02-13 21:33:23 · 479 阅读 · 0 评论 -
[机器学习]决策树
一、理论ref3 chapter 9ref1 chapter 41. 总是搞不清几种决策树的名字名字 划分选择ID3 信息增益C4.5 增益率 与ID3类似,校正了ID3偏向于选择取值较多的特征的问题CART 基尼系数 学的是二叉树,用于 回归(如最小二乘回归树)+分类2. 决策树学习三个步骤:特征选择,决策树的生成,决策树的修剪3.3. 剪枝:...原创 2017-11-22 18:08:24 · 249 阅读 · 0 评论 -
计算机学术期刊、会议分类等级
一、国际期刊会议据悉,CCF(中国计算机学会)是以A、B、C类划分(A最好);而中科院是以一、二、三区划分(一最好)1. CCF分类以下网址是人工智能方面的分类(如下图所示):http://history.ccf.org.cn/sites/ccf/biaodan.jsp?contentId=2903940690839【ctrl + F 】,可以搜索对应期刊的等级,表格中的网址给出了相应期刊的官方地...原创 2018-03-09 11:22:21 · 62637 阅读 · 6 评论 -
算法的鲁棒性
在机器学习领域,总是看到“算法的鲁棒性”这类字眼,比如这句--L1范数比L2范数鲁棒。 “鲁棒”的英文是robustness,其是一个特别大的研究领域。最权威的著作当属稳健统计的2本厚书 文献[1]和[2],有志之士可作研究。 本人的硕士论文对算法鲁棒性有所涉及,并偏向聚类算法的鲁棒性,但也只是学到了一点皮毛,考虑到网上的相关博文极少,故在此记录一番。1. Huber...原创 2018-04-30 16:15:16 · 105116 阅读 · 1 评论