Secretary POJ - 2217 (后缀数组)

传送门

先考虑一个串中出现过两次以上的子串最大长度, 很显然, 出现过两次以上的子串一定是SA数组中相邻两个后缀的前缀, 所以要找最长的一定是高度数组的最大值.

而两个字符串则可以通过拼接成一个字符串来简化成上面一个串的形式, 但是拼接时候要插入在两个字符串中间插入一个不会出现的字符, 这样就能保证我们求出的公共子串一定是只来自于一个串的.

还要判断SA数组中相邻两个后缀是来自两个不同的串的


#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>

using namespace std;

const int maxn=10005;

char a[maxn],b[maxn];
int rankk[maxn];
int sa[maxn];
int tmp[maxn];
int lcp[maxn];
int n,k;
//用的是快速排序
bool compare_sa(int i,int j)
{
    if(rankk[i]!=rankk[j]){
        return rankk[i]<rankk[j];
    }else{
        int ri=i+k<=n?rankk[i+k]:-1;
        int rj=j+k<=n?rankk[j+k]:-1;
        return ri<rj;
    }
}

void construct_sa()
{
    for(int i=0;i<=n;i++){
        sa[i]=i;
        rankk[i]=i<n?a[i]:-1;
    }
    for(k=1;k<=n;k<<=1){
        sort(sa,sa+n+1,compare_sa);
        tmp[sa[0]]=0;
        for(int i=1;i<=n;i++){
            tmp[sa[i]]=tmp[sa[i-1]]+(compare_sa(sa[i-1],sa[i])?1:0);
        }
        for(int i=0;i<=n;i++){
            rankk[i]=tmp[i];
        }
    }
}

void construct_lcp()
{
    for(int i=0;i<=n;i++){
        rankk[sa[i]]=i;
    }
    int h=0;
    lcp[0]=0;
    for(int i=0;i<n;i++){
        int j=sa[rankk[i]-1];
        if(h>0){
            h--;
        }
        for(;j+h<n&&i+h<n;h++){
            if(a[j+h]!=a[i+h]){
                break;
            }
        }
        lcp[rankk[i]-1]=h;
    }
}

int main()
{
    int t;
    scanf("%d",&t);
    getchar();
    while(t--){
        cin.getline(a,maxn);
        cin.getline(b,maxn);
        int la=strlen(a),lb=strlen(b);
        a[la]=0;
        copy(b,b+lb,a+la+1);
        n=la+lb+1;
        construct_sa();
        construct_lcp();
        int ans=0;
        for(int i=0;i<n;i++){
            if((sa[i]<la)!=(sa[i+1]<la)){
                ans=max(ans,lcp[i]);
            }
        }
        printf("Nejdelsi spolecny retezec ma delku %d.\n",ans);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值