爬山算法 ( Hill Climbing )/模拟退火(SA,Simulated Annealing)

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/zhouzi2018/article/details/82118673

一. 爬山算法 ( Hill Climbing )

爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。

 

二. 模拟退火(SA,Simulated Annealing)思想

在实际日常中,人们会经常遇到如下问题:在某个给定的定义域X内,求函数f(x)对应的最优值。此处以最小值问题举例(最大值问题可以等价转化成最小值问题),形式化为: 


如果X是离散有限取值,那么可以通过穷取法获得问题的最优解;如果X连续,但f(x)是凸的,那可以通过梯度下降等方法获得最优解;如果X连续且f(x)非凸,虽说根据已有的近似求解法能够找到问题解,可解是否是最优的还有待考量,很多时候若初始值选择的不好,非常容易陷入局部最优值。 

随着日常业务场景的复杂化,第三种问题经常遇见。如何有效地避免局部最优的困扰?模拟退火算法应运而生。其实模拟退火也算是启发式算法的一种,具体学习的是冶金学中金属加热-冷却的过程。由S.Kirkpatrick, C.D.Gelatt和M.P.Vecchi在1983年所发明的,V.Čern在1985年也独立发明此演算法。

不过模拟退火算法到底是如何模拟金属退火的原理?主要是将热力学的理论套用到统计学上,将搜寻空间内每一点想像成空气内的分子;分子的能量,就是它本身的动能;而搜寻空间内的每一点,也像空气分子一样带有“能量”,以表示该点对命题的合适程度。演算法先以搜寻空间内一个任意点作起始:每一步先选择一个“邻居”,然后再计算从现有位置到达“邻居”的概率。若概率大于给定的阈值,则跳转到“邻居”;若概率较小,则停留在原位置不动。

一、模拟退火算法基本思想

模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。在迭代更新可行解时,以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以下图为例,假定初始解为左边蓝色点A,模拟退火算法会快速搜索到局部最优解B,但在搜索到局部最优解后,不是就此结束,而是会以一定的概率接受到右边的移动。也许经过几次这样的不是局部最优的移动后会到达全局最优点D,于是就跳出了局部最小值。 

这里写图片描述


根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为p(dE),表示为: 


其中k是波尔兹曼常数,值为k=1.3806488(13)×10−23,exp表示自然指数,且dE<0。因此dE/kT<0,所以p(dE)函数的取值范围是(0,1)。满足概率密度函数的定义。其实这条公式更直观意思就是:温度越高,出现一次能量差为p(dE)的降温的概率就越大;温度越低,则出现降温的概率就越小。

在实际问题中,这里的“一定的概率”的计算参考了金属冶炼的退火过程。假定当前可行解为x,迭代更新后的解为x_new,那么对应的“能量差”定义为: 


其对应的“一定概率”为: 


注:在实际问题中,可以设定k=1。因为kT可以等价于一个参数T。如设定k=2、T=1000,等于直接设定T=2000的效果。

二、模拟退火算法描述

  1. 初始化:初始温度T(充分大),温度下限Tmin(充分小),初始解状态x(是算法迭代的起点),每个T值的迭代次数L;
  2. 对l=1,2,...,L做第3至第6步;
  3. 产生新解x_new: (x_new=x+Δx);
  4. 利计算增量Δf=f(x_new)−f(x),其中f(x)为优化目标;
  5. 若Δf<0(若寻找最大值,Δf>0)则接受x_new作为新的当前解,否则以概率exp(−Δf/(kT))接受x_new作为新的当前解;
  6. 如果满足终止条件则输出当前解作为最优解,结束程序。(终止条件通常取为连续若干个新解都没有被接受时终止算法。);
  7. T逐渐减少,且T>Tmin,然后转第2步。

 

这里写图片描述

 

三、模拟退火算法的优缺点

模拟退火算法的应用很广泛,可以高效地求解NP完全问题,如货郎担问题(Travelling Salesman Problem,简记为TSP)、最大截问题(Max Cut Problem)、0-1背包问题(Zero One Knapsack Problem)、图着色问题(Graph Colouring Problem)等等,但其参数难以控制,不能保证一次就收敛到最优值,一般需要多次尝试才能获得(大部分情况下还是会陷入局部最优值)。观察模拟退火算法的过程,发现其主要存在如下三个参数问题:

  (1) 温度T的初始值设置问题 
  温度TT的初始值设置是影响模拟退火算法全局搜索性能的重要因素之一、初始温度高,则搜索到全局最优解的可能性大,但因此要花费大量的计算时间;反之,则可节约计算时间,但全局搜索性能可能受到影响。

  (2) 退火速度问题,即每个TT值的迭代次数 
  模拟退火算法的全局搜索性能也与退火速度密切相关。一般来说,同一温度下的“充分”搜索是相当必要的,但这也需要计算时间。循环次数增加必定带来计算开销的增大。

  (3) 温度管理问题 
  温度管理问题也是模拟退火算法难以处理的问题之一。实际应用中,由于必须考虑计算复杂度的切实可行性等问题,常采用如下所示的降温方式: 

T=α×T.α∈(0,1).


注:为了保证较大的搜索空间,α一般取接近于1的值,如0.95、0.9。

  关于爬山算法与模拟退火,有一个有趣的比喻:

  爬山算法:兔子朝着比现在高的地方跳去。它找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。

  模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高方向跳去。这就是模拟退火。

附上模拟退火算法伪代码:

四. 使用模拟退火算法解决旅行商问题

  旅行商问题 ( TSP , Traveling Salesman Problem ) :有N个城市,要求从其中某个问题出发,唯一遍历所有城市,再回到出发的城市,求最短的路线。

  旅行商问题属于所谓的NP完全问题,精确的解决TSP只能通过穷举所有的路径组合,其时间复杂度是O(N!) 。

  使用模拟退火算法可以比较快的求出TSP的一条近似最优路径。(使用遗传算法也是可以的,我将在下一篇文章中介绍)模拟退火解决TSP的思路:

1. 产生一条新的遍历路径P(i+1),计算路径P(i+1)的长度L( P(i+1) )

2. 若L(P(i+1)) < L(P(i)),则接受P(i+1)为新的路径,否则以模拟退火的那个概率接受P(i+1) ,然后降温

3. 重复步骤1,2直到满足退出条件

  产生新的遍历路径的方法有很多,下面列举其中3种:

1. 随机选择2个节点,交换路径中的这2个节点的顺序。

2. 随机选择2个节点,将路径中这2个节点间的节点顺序逆转。

3. 随机选择3个节点m,n,k,然后将节点m与n间的节点移位到节点k后面。

五. 算法评价

        模拟退火算法是一种随机算法,并不一定能找到全局的最优解,可以比较快的找到问题的近似最优解。 如果参数设置得当,模拟退火算法搜索效率比穷举法要高。

展开阅读全文

没有更多推荐了,返回首页