Euler Circuit UVA - 10735 (网络流建模)

传送门

题意:给出一个V个点和E条边的混合图(即有的边是无向边,有的边是有向边),是求出它的一条欧拉回路,如果没有,输出无解信息。

题解:参考了传送门,这道题不能是混合图转有向图去做,因为本题中的无向边只能走一次。那么可以首先假定所有无向边的方向,然后统计每个点的入度和出度,如果所有点的入度和出度相等,则现在的G已经存在欧拉回路了。假设一个点的入度为2,出度为4,则可以想办法把一条出边变为入边(前提是那条出边是无向边),这样入度和出度就都等于3了,一般地,如果一个点的入度为in,出度为out,则只需要把出度增加(in-out)/2即可(因为总度数不变,此时入度和出度相等)。如果in和out的奇偶性不同,那么问题无解。所以可以用degree来维护每个点的(出度-入度)的值,然后接着判断每个点的degree是否都是偶数,如果是奇数,说明奇偶性不符合,否则判断另外一种情况,如果degree>0的话,那么将超级源点S与之相连,容量为degree/2,因为改变一条边,会使得degree-2,那么至多必须(满足满载)改变degree/2条边的大小,对于degree<0的边,将此点与超级汇点T与之相连,容量为degree/2,道理同上,之后无向边之间连接容量为1的边,跑最大流,看是否满流,如果满流,那么在边的改变情况下重新建图,跑欧拉回路,否则无解。

附上代码:

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;

const int INF = 1000000000;

struct Edge {
  int from, to, cap, flow;
  Edge(int u, int v, int c, int f):from(u),to(v),cap(c),flow(f) {}
};

const int maxn = 100+10;

struct EdmondsKarp {
  int n, m;
  vector<Edge> edges;    // 边数的两倍
  vector<int> G[maxn];   // 邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
  int a[maxn];           // 当起点到i的可改进量
  int p[maxn];           // 最短路树上p的入弧编号

  void init(int n) {
    for(int i = 0; i < n; i++) G[i].clear();
    edges.clear();
  }

  void AddEdge(int from, int to, int cap) {
    edges.push_back(Edge(from, to, cap, 0));
    edges.push_back(Edge(to, from, 0, 0));
    m = edges.size();
    G[from].push_back(m-2);
    G[to].push_back(m-1);
  }

  int Maxflow(int s, int t) {
    int flow = 0;
    for(;;) {
      memset(a, 0, sizeof(a));
      queue<int> Q;
      Q.push(s);
      a[s] = INF;
      while(!Q.empty()) {
        int x = Q.front(); Q.pop();
        for(int i = 0; i < G[x].size(); i++) {
          Edge& e = edges[G[x][i]];
          if(!a[e.to] && e.cap > e.flow) {
            p[e.to] = G[x][i];
            a[e.to] = min(a[x], e.cap-e.flow);
            Q.push(e.to);
          }
        }
        if(a[t]) break;
      }
      if(!a[t]) break;
      for(int u = t; u != s; u = edges[p[u]].from) {
        edges[p[u]].flow += a[t];
        edges[p[u]^1].flow -= a[t];
      }
      flow += a[t];
    }
    return flow;
  }
};

EdmondsKarp g;

const int maxm = 500 + 5;

int n, m, u[maxm], v[maxm], directed[maxm], id[maxm], diff[maxn];

// for euler tour only
vector<int> G[maxn];
vector<int> vis[maxn];
vector<int> path;

void euler(int u) {
  for(int i = 0; i < G[u].size(); i++)
    if(!vis[u][i]) {
      vis[u][i] = 1;
      euler(G[u][i]);
      path.push_back(G[u][i]+1);
    }
}

void print_answer() {
  // build the new graph
  for(int i = 0; i < n; i++) { G[i].clear(); vis[i].clear(); }
  for(int i = 0; i < m; i++) {
    bool rev = false;
    if(!directed[i] && g.edges[id[i]].flow > 0) rev = true;
    if(!rev) { G[u[i]].push_back(v[i]); vis[u[i]].push_back(0); }
    else { G[v[i]].push_back(u[i]); vis[v[i]].push_back(0); }
  }

  // print euler tour
  path.clear();
  euler(0);

  printf("1");
  for(int i = path.size()-1; i >= 0; i--) printf(" %d", path[i]);
  printf("\n");
}

int main() {
  int T;
  scanf("%d", &T);

  while(T--) {
    scanf("%d%d", &n, &m);
    g.init(n+2);

    memset(diff, 0, sizeof(diff));
    for(int i = 0; i < m; i++) {
      char dir[9];
      scanf("%d%d%s", &u[i], &v[i], dir);
      u[i]--; v[i]--;
      directed[i] = (dir[0] == 'D' ? 1 : 0);
      diff[u[i]]++; diff[v[i]]--;
      if(!directed[i]) { id[i] = g.edges.size(); g.AddEdge(u[i], v[i], 1); }
    }

    bool ok = true;
    for(int i = 0; i < n; i++)
      if(diff[i] % 2 != 0) { ok = false; break; }

    int s = n, t = n+1;
    if(ok) {
      int sum = 0;
      for(int i = 0; i < n; i++) {
        if(diff[i] > 0) { g.AddEdge(s, i, diff[i]/2); sum += diff[i]/2; } // provide "out-degree"
        if(diff[i] < 0) { g.AddEdge(i, t, -diff[i]/2); }
      }
      if(g.Maxflow(s, t) != sum) ok = false;
    }

    if(!ok) printf("No euler circuit exist\n");
    else print_answer(); // underlying graph is always connected

    if(T) printf("\n");
  }
  return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值