历届试题 对局匹配(划分集合dp/贪心)

题意:传送门
题解:怎么能产生矛盾,那就是正好相差k,那就可以把这些数根据模k的余数统一处理成k个集合,然后在每个集合上进行操作,dp[j]=max(dp[j-k],dp[j-2k]+cnt[j]),也就是这个数要么不用,那么直接用第j-k个,要么使用,那么就是j-2k,最后把划分的集合分别累加即可。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=1e5+5;
inline int read()
{
    char ch=getchar();
    int f=1,x=0;
    while(!(ch>='0'&&ch<='9')){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
    return x*f;
}
int n,k,a[maxn],cnt[maxn],dp[maxn];
int main()
{
    n=read();k=read();
    for(int i=0;i<n;i++){
        a[i]=read();
        cnt[a[i]]++;
    }
    int sum=0;
    if(k==0){
        sort(a,a+n);
        int m=unique(a,a+n)-a;
        printf("%d\n",m);
        return 0;
    }
    for(int i=0;i<k;i++){
        int j;
        for(j=i;j<=maxn;j+=k){
            if(j==i){
                dp[j]=cnt[j];
            }else if(j==i+k){
                dp[j]=max(cnt[j],dp[j-k]);
            }else{
                dp[j]=max(dp[j-k],dp[j-2*k]+cnt[j]);
            }
        }
        sum+=dp[j-k];
    }
    printf("%d\n",sum);
    return 0;
}

第二种方法使用贪心
贪心选出能匹配的最大局数,最后用总人数减去能匹配的最大局数即可。匹配最大局数从小到大匹配最贪心。

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=1e5+5;
inline int read()
{
    char ch=getchar();
    int f=1,x=0;
    while(!(ch>='0'&&ch<='9')){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
    return x*f;
}
int n,k,a[maxn],cnt[maxn],dp[maxn];
int main()
{
    n=read();k=read();
    for(int i=0;i<n;i++){
        a[i]=read();
        cnt[a[i]]++;
    }
    int sum=0;
    if(k==0){
        sort(a,a+n);
        int m=unique(a,a+n)-a;
        printf("%d\n",m);
        return 0;
    }
    for(int i=0;i<k;i++){
        int j;
        for(j=i;j<=maxn;j+=k){
            if(j==i){
                dp[j]=cnt[j];
            }else if(j==i+k){
                dp[j]=max(cnt[j],dp[j-k]);
            }else{
                dp[j]=max(dp[j-k],dp[j-2*k]+cnt[j]);
            }
        }
        sum+=dp[j-k];
    }
    printf("%d\n",sum);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值