花书+吴恩达深度学习(二六)近似推断(EM, 变分推断)

本文介绍了深度学习中近似推断的方法,包括期望最大化(EM)算法和变分推断。EM算法通过E步和M步交替进行优化,而变分推断则通过在约束的分布族上最大化证据下界(ELBO)。此外,还讨论了最大后验推断(MAP)和稀疏编码在近似推断中的应用。
摘要由CSDN通过智能技术生成

如果这篇文章对你有一点小小的帮助,请给个关注,点个赞喔,我会非常开心的~

花书+吴恩达深度学习(二三)结构化概率模型(贝叶斯网络、马尔可夫网络)
花书+吴恩达深度学习(二四)蒙特卡罗方法(重要采样,MCMC)
花书+吴恩达深度学习(二五)直面配分函数(CD, SML, SM, RM, NCE)
花书+吴恩达深度学习(二六)近似推断(EM, 变分推断)

0. 前言

通常我们有一系列可见变量 v v v和一系列潜变量 h h h

推断困难通常是指难以计算 p ( h ∣ v ) p(h\mid v) p(hv)或其期望

1. 将推断视为优化问题

假设一个包含可见变量 v v v和潜变量 h h h的概率模型,我们希望观察 log ⁡ p ( v ; θ ) \log p(v;\theta) logp(v;θ),作为替代,我们可以计算一个 log ⁡ p ( v ; θ ) \log p(v;\theta) logp(v;θ)的下界 L ( v , θ , q ) L(v,\theta,q) L(v,θ,q),称为证据下界(evidence lower bound, ELBO)
L ( v , θ , q ) = log ⁡ p ( v ; θ ) − D K L ( q ( h ∣ v ) ∣ ∣ p ( h ∣ v ; θ ) ) L(v,\theta,q)=\log p(v;\theta)-D_{KL}(q(h\mid v)\mid \mid p(h\mid v;\theta)) L(v,θ,q)=logp(v;θ)DKL(q(hv)p(hv;θ))
证据下界的标准定义为:
L ( v , θ , q ) = E h ∼ q [ log ⁡ p ( h , v ) ] + H ( q ) L(v,\theta,q)=\mathbb{E}_{h\sim q}[\log p(h,v)]+H(q) L(v,θ,q)=Ehq[logp(h,v)]+H(q)

越好的近似 p ( h ∣ v ) p(h\mid v) p(hv)的分布 q ( h ∣ v ) q(h\mid v) q(hv),得到的下界就越紧,与 log ⁡ p ( v ) \log p(v) logp(v)更接近。当

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值