一层、两层及多层神经网络 与 激活函数作用 理解

一层网络实际上是一个线性函数,即权重W与输入x相乘(偏置项包含其中)

当我们增加一层,变为两层神经网络

 

这里的max是将第一层负数结果置为0

用权重W2乘第一层结果

当我们扩展到三层即更多层,也是类似

那么我们不使用max可以吗?

 

我们看到,如果没有max,W1 W2 可以合成一个大的W3,最后还是一个线性分类,没有实质性改变

所以,这里的max是不可去掉的,而这里的max,被称作激活函数

激活函数:

 

我们看到激活函数有很多种,也可以自己定义,我们上面使用的max,就是ReLu,也是在默认情况下效果较好的

激活函数给模型引入了非线性因素,使得深层神经网络有了意义

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值