深度学习的公平性:计算的角度
利用深度学习缓解歧视性,从三个方面:Discrimination via Input,Discrimination via Representation,Prediction Quality Disparity的三个阶段Pre-processing, In-processing,Post-processing论述缓解的方法。
一、Discrimination via Input
(1)Pre-processing:用替代值替换这些对公平性敏感的特征
(2)In-processing:通过模型正则化。正则化隐式或非规则地优化了公平性度量
(3)Post-processing:在推理时间内利用模型的预测和保护属性对模型的预测进行校准
二、Discrimination via Representation
(1)Pre-processing:收集平衡的数据集是缓解代表偏差的一种可能方法
(2)In-processing:对抗性训练
(3)Post-processing:抑制已捕获保护属性的神经元
三、Prediction Quality Disparity
(1)Pre-processing:强化训练数据集的多样性
(2)In-processing:规范化的模型训练-----迁移学习