Fairness in Deep Learning: A Computational Perspective

深度学习的公平性:计算的角度

利用深度学习缓解歧视性,从三个方面:Discrimination via Input,Discrimination via Representation,Prediction Quality Disparity的三个阶段Pre-processing, In-processing,Post-processing论述缓解的方法。

一、Discrimination via Input

(1)Pre-processing:用替代值替换这些对公平性敏感的特征

(2)In-processing:通过模型正则化。正则化隐式或非规则地优化了公平性度量

(3)Post-processing:在推理时间内利用模型的预测和保护属性对模型的预测进行校准

二、Discrimination via Representation

(1)Pre-processing:收集平衡的数据集是缓解代表偏差的一种可能方法

(2)In-processing:对抗性训练

(3)Post-processing:抑制已捕获保护属性的神经元

三、Prediction Quality Disparity

(1)Pre-processing:强化训练数据集的多样性

(2)In-processing:规范化的模型训练-----迁移学习

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值