生成多样、真实的评论(2019 IEEE International Conference on Big Data )

本文提出了一种新的评论生成模型,结合Transformer和GRU,利用上下文信息增强评论的多样性和相关性。研究通过Yelp数据集进行实验,提出DMet指标衡量生成文本的特性。

论文题目(Title):Learning to Generate Diverse and Authentic Reviews via an Encoder-Decoder Model with Transformer and GRU

研究问题(Question):评论生成,由上下文+评论->生成评论

研究动机(Motivation):现有的一些研究仅使用用户评论文本生成虚假评论,而另一些研究则利用了语境信息,如评论评分、餐厅名称、城市、州和食品标签。它缺乏将两者结合起来的研究工作。上下文信息有助于产生相关的评论,而评论文本有助于产生不同的评论。因此,将语境信息与已有的评论结合起来,有利于获得既相关又多样的评论。

主要贡献(Contribution):个人觉得创新性不高,主要分为两点:

1. 设计了一个编码器-解码器评论生成模型,该模型结合了Transformer模型和GRU编码器,对来自用户评论和业务上下文的特征进行编码。
2. 提出了一个名为DMet的度量指标来衡量机器生成文本的多样性和新颖性。

研究思路(Idea):选取一条文本描述和其对应的5条评论

第一部分是6层Transformer编码器,其输入是预处理后的上下文和目标分数。Transformer编码器将为上下文的每个标记生成输入嵌入和位置编码,然后通过自注意和多头注意创建上下文的新表示。

第二部分是GRU编码器,由

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值