Python difflib 实现论文、代码查重

本文介绍了如何使用Python标准库difflib中的SequenceMatcher类实现论文和代码的查重,通过比较文本内容的相似度来评估重复性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

说明:仅供学习使用,请勿用于非法用途,若有侵权,请联系博主删除

作者:zhu6201976

一、需求背景

在学术界和编程领域,查重是一项至关重要的任务,它有助于确保学术诚信和代码质量。为了实现这一目标,Python 提供了强大的系统库 difflib 库,可以用来比较文本之间的相似度,并识别可能存在的重复内容。

特殊要求:要求能识别出因人为原因 将一行代码拆分成多行代码 依然能成功检测。

二、difflib基本介绍

difflib 是 Python 的标准库之一,提供了用于比较序列之间差异的功能。它包含多种算法,可以用来比较字符串、文件和数据结构等。difflib 库中最常用的类是 SequenceMatcher,它能够找出两个序列之间的相似性,并生成一个相似性比较报告。

三、实现论文查重

假设我们有两篇论文 A 和 B,我们想要比较它们之间的相似度。我们可以利用 difflib 库中的 SequenceMatcher 类来实现这个功能。首先,我们需要将论文 A 和 B 的内容读取到内存中,然后使用 SequenceMatcher 对象来进行比较。最后,根据比较结果生成一个相似性报告。

示例代码:

import difflib

# 读取论文 A 和 B 的内容
with open('paper_A.txt', 'r') as file:
    paper_a_content = file.read()

with open('paper_B.txt', 'r') as file:
    paper_b_content = file.read()

# 创建 SequenceMatcher 对象并进行比较
matcher = difflib.SequenceMatcher(None, paper_a_content, paper_b_content)
similarity_ratio = matcher.ratio()

print(f'论文 A 和 B 的相似度为:{similarity_ratio}')

四、实现代码查重

除了论文之外,我们还可以利用 difflib 库来比较代码之间的相似度。假设我们有两个代码文件 X 和 Y,我们想要确定它们之间的相似性。我们可以使用与上述相似的方法来实现代码查重功能。

import difflib

# 读取代码文件 X 和 Y 的内容
with open('code_X.py', 'r', encoding='utf-8') as file:
    code_x_content = file.read()

with open('code_Y.py', 'r', encoding='utf-8') as file:
    code_y_content = file.read()

# 创建 SequenceMatcher 对象并进行比较
matcher = difflib.SequenceMatcher(None, code_x_content, code_y_content)
similarity_ratio = matcher.ratio()

print(f'代码文件 X 和 Y 的相似度为:{similarity_ratio}')

 

五、总结说明

本文介绍了一种简单的方法实现论文或代码查重,在实际工作和生活中,还有很多其他优秀的第三方库或算法可实现更加精准的结果,比如引入大模型和语义理解。

运行结果:

注意:ratio结果大于0.6即标识2篇文章重复率非常高,是相似的。 

### 维普查重系统的实现原理 维普查重系统的核心在于其强大的文本匹配算法和数据库支持。该系统通过将待检测的论文与庞大的学术资源库进行对比,利用自然语言处理技术和语义分析来判断相似度[^1]。具体而言,维普查重会先对输入的文档进行分词处理,提取关键词并构建特征向量,随后与已有文献中的对应部分进行逐一比较。 为了提高准确性,维普查重不仅依赖于简单的字符串匹配,还会考虑上下文含义以及句式的变体形式。这种多维度的比对方式能够有效减少误判率,并提升查重结果的可靠性[^2]。 另外,在实际应用过程中,用户可以通过上传Word文件或者直接粘贴文字到指定区域完成初步提交工作;之后按照提示设置相关参数比如忽略引用标注等内容即可获得最终报告[^4]。 ### 关于降低维普查重比例的技术手段 除了依靠工具自动修改外,还可以采用手动调整的方法来进行合理合法范围内的改写操作。例如可以尝试改变表达结构、替换同义词语等方式重新表述原意而不改变核心观点[^3]。此外也可以借助图表展示数据信息代替冗长的文字描述从而达到相同目的即减少了重复字数又增强了直观效果。 ```python def check_similarity(text1, text2): """ A simple function to demonstrate similarity checking. Args: text1 (str): The first string of text. text2 (str): The second string of text. Returns: float: Similarity score between two texts. """ from difflib import SequenceMatcher matcher = SequenceMatcher(None, text1.lower(), text2.lower()) return matcher.ratio() ``` 上述代码片段展示了如何计算两个字符串之间的相似程度,这只是一个基础示例用于理解概念而非真实反映维普查重内部机制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值