欧拉公式
在数论中,欧拉定理(也称费马-欧拉定理)是一个关于同余的性质。欧拉定理表明,若n,a为正整数,且n,a互质,(a,n) = 1,则a^φ(n) ≡ 1 (mod n)
证明:
假设小于a的φ(n)个与n互质的数为a1,a2,…,aφ(n),集合S={ a1,a2,…,aφ(n)}就是n的一个化简剩余系。
a和n互质,所以ai*a也必然和n互质,所以ai*a% n 在集合S中(根据欧几里得算法,gcd(m,n) = gcd(n%m, m),可以做以下推导gcd(ai*a, n) = 1 à gcd(ai*a% n, n) = 1, 即ai*a % n和n互质,所以它属于集合S),接下来还可以证明所有的ai*a % n都不相同:
如果ai*a % n = aj*a % n 则(ai-aj)a是n的整数倍,而a与n互质,所以只能是(ai-aj)=k*n,但这是不可能的。所以所有的ai*a % n都不相同。
(a*a1*a*a2*…*a*aφ(n)) (mod n)
= (a*a1 (mod n)*a*a2(modn)*…*a*aφ(n) (mod n)) (mod n)
= (a1*a2*…*aφ(n) )(mod n)
消去化简得到
a^φ(n) ≡ 1 (mod n)
得证。
当n是素数时,欧拉定理就变成了费马小定理。
a^(p-1) ≡ 1 (mod p) 因为φ(n) = n-1。