网易云课堂数据结构——二叉搜索树(2015.5.9-10)

好久没上了。。。
数据结构给我的感觉就是,知道是个什么玩意儿,懂这个结构怎么实现的,但是要解决什么问题就感觉无从下手,尤其是带指针的语言,完全晕,上次计蒜客一个cpp的部分逆置单链表的题目卡了一晚上还是没弄出来,不知道到底是哪里不对劲了,心塞。

二叉搜索树(Binary Search Tree)

特征:
- 非空左子树的值小于其根节点的值
- 非空右子树的值大于其根结点的值
- 左右子树都是二叉搜索树

几个常用函数及实现:

  • Position Find(ElementType x,BinTree BST):查找元素X,返回地址
Position Find(ElementType X,BinTree BST){
    if(!BST) return NULL;
    if(X>BST->Data)
        return Find(X,BST->Right);
    else if(X<BST->Data)
        return Find(X,BST_>Left);
    else
        return BST;
}

树空时直接返回NULL,树不空时,和根节点的键值比较,大于则往右找,小于则往左找,循环这一过程,尾递归方式(在返回的时候进行递归),效率不高,从编译的角度尾递归都可以用循环代替,如下

Position IterFind(ElementType X,BinTree BST){
    while(BST){
        if(X>BST->Data)
            BST=BST->Right;
        else if(X<BST->Data)
            BST=BST->Left;
        else
            return BST;
    }
    return NULL;
}

最大元素一定在树的最右端分支的端结点上
最小元素一定在树的最左端分支的端结点上

  • Position FindMin(BinTree BST):查找最小元素并返回结点地址
Position FindMin(BinTree BST){
    if(!BST) return NULL;
    else if(!BST->Left)
        return BST;
    else
        return FindMin(BST->Left);
}

不断往左边走

  • Position FindMax(BinTreeBST):查找最大元素并返回结点地址
Position FindMax(BinTree BST){
    if(BST) 
        while(BST->Right) BST=BST->Right;
    return BST;
}

不断往右边走

  • BinTree Insert(ElementType X,BinTree BST):插入元素
 BinTree Insert(ElementType X,BinTree BST){
     if(!BST){
         BST=malloc(sizeof(struct TreeNode));
         BST->Data=X;
         BST->Left=Bst->Right=NULL;
    }else{
        if(X<BST->Data)
            BST->Left=Insert(X,BST->Left);
        else if(X>BST->Data)
            BST->Right=Insert(X,Bst->Right);
    return BST;

如果是空树,直接申请一个空间,否则则像find一样先比较,找到应该查入在哪一个结点后面之后,进入第一个分支,创建一个结点,挂在上一个结点后面。
因此不是return Insert(X,BST->Right)
而是BST->Right=Insert(X,BST->Right),把这个结点连接上一个结点。

  • BinTree Delete(ElementType X,BinTree BST):删除元素。三种情况
    • 叶节点:直接删除,再修改父节点指针置为NULL
    • 有一个孩子的结点:使父节点的指针指向要删除结点的孩子结点
    • 左右都不空:用另一节点替代被删除结点,右子树的最小元素,或左子树的最大元素(这两者一定不是有两个孩子的结点),使二叉搜索树的依然有顺序。
 BinTree Delete(ElementType X,BinTree BST){
     Postion Tmp;
     if(!BST) printf("not found");
     else if(X<BST->Data)
         BST->Left=Delete(X,BST->Left);//左子树递归删除
     else if(X>BST->Right)
         BST->Right=Delete(X,BST->Right);//右子树递归删除
     else//找到要删除的结点
         if(BST->Left && Bst->Right){//左右两边都不空
             Tmp=FindMin(BST->Right);//找到右边最小结点
             BST->Data=Tmp->Data;//拷贝复制给当前结点,替代
             BST->Right=Delete(BST->Data,BST->Right);//把右子树中的最小结点即Tmp删除
         }else{//有一个孩子
             Tmp=BST;
             if(!BST->Left)//左边空
                 BST=BST->Right;
             else if(!bst->Right)//右边空
                 BST=BST->Left;
             free(Tmp);
         }
     return BST;
}

哦靠,晕了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值