好久没上了。。。
数据结构给我的感觉就是,知道是个什么玩意儿,懂这个结构怎么实现的,但是要解决什么问题就感觉无从下手,尤其是带指针的语言,完全晕,上次计蒜客一个cpp的部分逆置单链表的题目卡了一晚上还是没弄出来,不知道到底是哪里不对劲了,心塞。
二叉搜索树(Binary Search Tree)
特征:
- 非空左子树的值小于其根节点的值
- 非空右子树的值大于其根结点的值
- 左右子树都是二叉搜索树
几个常用函数及实现:
- Position Find(ElementType x,BinTree BST):查找元素X,返回地址
Position Find(ElementType X,BinTree BST){
if(!BST) return NULL;
if(X>BST->Data)
return Find(X,BST->Right);
else if(X<BST->Data)
return Find(X,BST_>Left);
else
return BST;
}
树空时直接返回NULL,树不空时,和根节点的键值比较,大于则往右找,小于则往左找,循环这一过程,尾递归方式(在返回的时候进行递归),效率不高,从编译的角度尾递归都可以用循环代替,如下
Position IterFind(ElementType X,BinTree BST){
while(BST){
if(X>BST->Data)
BST=BST->Right;
else if(X<BST->Data)
BST=BST->Left;
else
return BST;
}
return NULL;
}
最大元素一定在树的最右端分支的端结点上
最小元素一定在树的最左端分支的端结点上
- Position FindMin(BinTree BST):查找最小元素并返回结点地址
Position FindMin(BinTree BST){
if(!BST) return NULL;
else if(!BST->Left)
return BST;
else
return FindMin(BST->Left);
}
不断往左边走
- Position FindMax(BinTreeBST):查找最大元素并返回结点地址
Position FindMax(BinTree BST){
if(BST)
while(BST->Right) BST=BST->Right;
return BST;
}
不断往右边走
- BinTree Insert(ElementType X,BinTree BST):插入元素
BinTree Insert(ElementType X,BinTree BST){
if(!BST){
BST=malloc(sizeof(struct TreeNode));
BST->Data=X;
BST->Left=Bst->Right=NULL;
}else{
if(X<BST->Data)
BST->Left=Insert(X,BST->Left);
else if(X>BST->Data)
BST->Right=Insert(X,Bst->Right);
return BST;
如果是空树,直接申请一个空间,否则则像find一样先比较,找到应该查入在哪一个结点后面之后,进入第一个分支,创建一个结点,挂在上一个结点后面。
因此不是return Insert(X,BST->Right)
而是BST->Right=Insert(X,BST->Right),把这个结点连接上一个结点。
- BinTree Delete(ElementType X,BinTree BST):删除元素。三种情况
- 叶节点:直接删除,再修改父节点指针置为NULL
- 有一个孩子的结点:使父节点的指针指向要删除结点的孩子结点
- 左右都不空:用另一节点替代被删除结点,右子树的最小元素,或左子树的最大元素(这两者一定不是有两个孩子的结点),使二叉搜索树的依然有顺序。
BinTree Delete(ElementType X,BinTree BST){
Postion Tmp;
if(!BST) printf("not found");
else if(X<BST->Data)
BST->Left=Delete(X,BST->Left);//左子树递归删除
else if(X>BST->Right)
BST->Right=Delete(X,BST->Right);//右子树递归删除
else//找到要删除的结点
if(BST->Left && Bst->Right){//左右两边都不空
Tmp=FindMin(BST->Right);//找到右边最小结点
BST->Data=Tmp->Data;//拷贝复制给当前结点,替代
BST->Right=Delete(BST->Data,BST->Right);//把右子树中的最小结点即Tmp删除
}else{//有一个孩子
Tmp=BST;
if(!BST->Left)//左边空
BST=BST->Right;
else if(!bst->Right)//右边空
BST=BST->Left;
free(Tmp);
}
return BST;
}
哦靠,晕了