Max Sum
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6代码(C++)#include<iostream> using namespace std; #include<string.h> using namespace std; int main() { int t,i,j,sum,a,n,l,r,max,z; cin>>t; for(i=0;i<t;i++) { cin>>n; for(z=l=0,r=0,sum=0,max=-1001,j=0;j<n;j++) { cin>>a; sum+=a; if(max<sum) { l=z; r=j; max=sum; } if(sum<0) { z=j+1; sum=0; } } cout<<"Case "<<i+1<<":\n"<<max<<" "<<l+1<<" "<<r+1<<endl; if(i<t-1) cout<<endl; } }