子序列最大和(杭电acm1003)

Max Sum

Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.

Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).

Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.

Sample Input
  
  
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5

Sample Output
  
  
Case 1: 14 1 4 Case 2: 7 1 6
代码(C++)
#include<iostream>
using namespace std;
#include<string.h>
using namespace std;
int main()
{
	int t,i,j,sum,a,n,l,r,max,z;
	cin>>t;
	for(i=0;i<t;i++)
	{
		cin>>n;
		for(z=l=0,r=0,sum=0,max=-1001,j=0;j<n;j++)
		{
			cin>>a;
			sum+=a;
			if(max<sum)
			{
				l=z;
				r=j;
				max=sum;
			}
			if(sum<0)
			{
				z=j+1;
				sum=0;
			}
		}
		cout<<"Case "<<i+1<<":\n"<<max<<" "<<l+1<<" "<<r+1<<endl;
		if(i<t-1)
			cout<<endl;
	}
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值