图像处理中二次曲线拟合

本文介绍了在图像处理中,针对发光管中心线提取的问题,通过二次曲线拟合来解决。首先回顾了直线拟合的最小二乘法,然后详细阐述了如何运用类似方法进行二次曲线拟合,并提供了相应的Opencv实现代码,展示了拟合效果。
摘要由CSDN通过智能技术生成

2016/7/16


 

在一次提取发光管的中心线程序中,由于我们只拍到了断续而弯曲的发光管,所以无法使用光带中心线提取的方法进行提取。

在此背景下,我想到了拟合。之前有学过直线拟合的方法,名为最小二乘法。其基本步骤如下:

(1)    设需要拟合的直线为y=a*x+b。

(2)    首先选取进行拟合的点集,选取方法可以为阈值分割,模板匹配等,设最后选出的点集为。

(3)    求该点集到直线的距离平方和,

(4)    对Sum分别求关于x,y的偏导函数。

(5)    根据偏导求出该距离平方和最小时的a,b值即为拟合的曲线的参数。

为了与之后的二次曲线拟合做对比,我写了下直线拟合的函数,先从源图像中根据阈值分割选取拟合点集(这里我认为灰度值超过45即被选取),再根据上述步骤计算a,b的值。源代码如下:

/*输入为三通道图像*/

/*对图像中的亮点进行直线拟合*/

void cvLineFit1D(IplImage* src_getin)

{

    IplImage*src =cvCloneImage(src_getin);

    IplImage*image_threshold = cvCreateImage(cvGetSize(src),8,1);

    cvCvtColor(src,image_threshold,CV_BGR2GRAY);

    cvThreshold(image_threshold,image_threshold,45,255,CV_THRESH_BINARY);

    cvShowImage("cvLineFit1D[Threshold]",image_threshold);

 

    //设拟合的二次曲线方程为y=ax+b;

    //先求出各点到拟合直线上的距离的平方和;

    //求出使得该平方和最小的a,b的值 ;

    long long int k1=0;

    long long int k2=0;

    long long int k3=0;

    long long int k4=0;

    long long int k5=0;

    long long int k6=0;

    for (inti=0;i<image_threshold->height;i++)

    {

        for (intj=0;j<image_threshold->width;j++)

        {

            if(cvGetReal2D(image_threshold,i,j)==255)

            {

                k1+=2*i*i;

                k2+=2*i;

                k3+=2*i*j;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值