第一章 绪论
1、版本空间——图1.2的求法:
我觉得周老师可能是英文思维太强了,导致写出来的中文书有些时候比较拗口。比如说这个版本空间:
版本空间:
拗口的做法1:删去与正例不一致,与反例一致的假设
直观的做法2:留下与正例一致的假设,再去掉与反例一致的
书里貌似是说法1,这个比较难理解,按照这个来的做法也繁琐,比如[这个;]
但是换个说法,就很直观,那么 按照做法2就变成了下面的简单情况:
1、留下与正例1、2都一致的假设:
正例1反映出:色泽=(青绿,*);根蒂=(蜷缩,*);敲声=(浊响,*);
正例2反映出:色泽=(乌黑,*);根蒂=(蜷缩,*);敲声=(浊响,*);
版本空间需要满足全部正例子,故以上正例各属性分别各自取共同部分:
色泽=( * );根蒂=(蜷缩,*);敲声=(浊响,*)
组合起来共4种:
色泽=(*);根蒂=(蜷缩);敲声=(浊响)
色泽=(*);根蒂=(蜷缩);敲声=(*)
色泽=(*);根蒂=(*);敲声=(浊响)
色泽=(*);根蒂=(*);敲声=(*)
2、删去与反例3、4一致的假设:
反例3反映出:色泽=(青绿,*);根蒂=(硬挺,*);敲声=(清脆,*);
反例4反映出:色泽=(乌黑,*);根蒂=(稍蜷,*);敲声=(沉闷,*);
删除1中4种组合满足3 or 4的情况:
色泽=(*);根蒂=(*);敲声=(*)
删去,得 版本空间
色泽=(*);根蒂=(蜷缩);敲声=(浊响)
色泽=(*);根蒂=(蜷缩);敲声=(*)
色泽=(*);根蒂=(*);敲声=(浊响)
第二章 模型评估与选择
1、公式2.21
ℓ
r
a
n
k
=
1
m
+
m
−
∑
x
+
∈
D
+
∑
x
−
∈
D
−
(
I
(
f
(
x
+
)
<
f
(
x
−
)
)
+
1
2
I
(
f
(
x
+
)
=
f
(
x
−
)
)
)
=
1
m
+
m
−
∑
x
+
∈
D
+
[
∑
x
−
∈
D
−
I
(
f
(
x
+
)
<
f
(
x
−
)
)
+
1
2
⋅
∑
x
−
∈
D
−
I
(
f
(
x
+
)
=
f
(
x
−
)
)
]
=
∑
x
+
∈
D
+
[
1
m
+
⋅
1
m
−
∑
x
−
∈
D
−
I
(
f
(
x
+
)
<
f
(
x
−
)
)
+
1
2
⋅
1
m
+
⋅
1
m
−
∑
x
−
∈
D
−
I
(
f
(
x
+
)
=
f
(
x
−
)
)
]
=
∑
x
+
∈
D
+
1
2
⋅
1
m
+
⋅
[
2
m
−
∑
x
−
∈
D
−
I
(
f
(
x
+
)
<
f
(
x
−
)
)
+
1
m
−
∑
x
−
∈
D
−
I
(
f
(
x
+
)
=
f
(
x
−
)
)
]
\begin{aligned} \ell_{rank}&=\frac{1}{m^+m^-}\sum_{\boldsymbol{x}^+ \in D^+}\sum_{\boldsymbol{x}^- \in D^-}\left(\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)+\frac{1}{2}\mathbb{I}\left(f(\boldsymbol{x}^+)=f(\boldsymbol{x}^-)\right)\right) \\ &=\frac{1}{m^+m^-}\sum_{\boldsymbol{x}^+ \in D^+}\left[\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)+\frac{1}{2}\cdot\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)=f(\boldsymbol{x}^-)\right)\right] \\ &=\sum_{\boldsymbol{x}^+ \in D^+}\left[\frac{1}{m^+}\cdot\frac{1}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)+\frac{1}{2}\cdot\frac{1}{m^+}\cdot\frac{1}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)=f(\boldsymbol{x}^-)\right)\right] \\ &=\sum_{\boldsymbol{x}^+ \in D^+}\frac{1}{2}\cdot\frac{1}{m^+}\cdot\left[\frac{2}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)+\frac{1}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)=f(\boldsymbol{x}^-)\right)\right] \\ \end{aligned}
ℓrank=m+m−1x+∈D+∑x−∈D−∑(I(f(x+)<f(x−))+21I(f(x+)=f(x−)))=m+m−1x+∈D+∑[x−∈D−∑I(f(x+)<f(x−))+21⋅x−∈D−∑I(f(x+)=f(x−))]=x+∈D+∑[m+1⋅m−1x−∈D−∑I(f(x+)<f(x−))+21⋅m+1⋅m−1x−∈D−∑I(f(x+)=f(x−))]=x+∈D+∑21⋅m+1⋅[m−2x−∈D−∑I(f(x+)<f(x−))+m−1x−∈D−∑I(f(x+)=f(x−))]
也就是梯形公式,求得是ROC曲线之上各梯形(矩形)面积之和:
高
=
1
m
+
高=\frac{1}{m^+}
高=m+1
下
底
=
1
m
−
∑
x
−
∈
D
−
I
(
f
(
x
+
)
<
f
(
x
−
)
)
下底=\frac{1}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)
下底=m−1∑x−∈D−I(f(x+)<f(x−))
上
底
=
1
m
−
∑
x
−
∈
D
−
I
(
f
(
x
+
)
<
f
(
x
−
)
)
+
1
m
−
∑
x
−
∈
D
−
I
(
f
(
x
+
)
=
f
(
x
−
)
)
上底=\frac{1}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)+\frac{1}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)=f(\boldsymbol{x}^-)\right)
上底=m−1∑x−∈D−I(f(x+)<f(x−))+m−1∑x−∈D−I(f(x+)=f(x−))