西瓜书笔记

第一章 绪论

1、版本空间——图1.2的求法:

我觉得周老师可能是英文思维太强了,导致写出来的中文书有些时候比较拗口。比如说这个版本空间:

版本空间:
拗口的做法1:删去与正例不一致,与反例一致的假设
直观的做法2:留下与正例一致的假设,再去掉与反例一致的

书里貌似是说法1,这个比较难理解,按照这个来的做法也繁琐,比如[这个;]
但是换个说法,就很直观,那么 按照做法2就变成了下面的简单情况:

1、留下与正例1、2都一致的假设:

正例1反映出:色泽=(青绿,*);根蒂=(蜷缩,*);敲声=(浊响,*);
正例2反映出:色泽=(乌黑,*);根蒂=(蜷缩,*);敲声=(浊响,*);
版本空间需要满足全部正例子,故以上正例各属性分别各自取共同部分:
           色泽=(    * );根蒂=(蜷缩,*);敲声=(浊响,*)
           
组合起来共4种:
色泽=(*);根蒂=(蜷缩);敲声=(浊响)
色泽=(*);根蒂=(蜷缩);敲声=(*)
色泽=(*);根蒂=(*);敲声=(浊响)
色泽=(*);根蒂=(*);敲声=(*)

2、删去与反例3、4一致的假设:

反例3反映出:色泽=(青绿,*);根蒂=(硬挺,*);敲声=(清脆,*);
反例4反映出:色泽=(乌黑,*);根蒂=(稍蜷,*);敲声=(沉闷,*);
删除1中4种组合满足3 or 4的情况:
色泽=(*);根蒂=(*);敲声=(*)

删去,得 版本空间
色泽=(*);根蒂=(蜷缩);敲声=(浊响)
色泽=(*);根蒂=(蜷缩);敲声=(*)
色泽=(*);根蒂=(*);敲声=(浊响)

第二章 模型评估与选择

1、公式2.21

ℓ r a n k = 1 m + m − ∑ x + ∈ D + ∑ x − ∈ D − ( I ( f ( x + ) < f ( x − ) ) + 1 2 I ( f ( x + ) = f ( x − ) ) ) = 1 m + m − ∑ x + ∈ D + [ ∑ x − ∈ D − I ( f ( x + ) < f ( x − ) ) + 1 2 ⋅ ∑ x − ∈ D − I ( f ( x + ) = f ( x − ) ) ] = ∑ x + ∈ D + [ 1 m + ⋅ 1 m − ∑ x − ∈ D − I ( f ( x + ) < f ( x − ) ) + 1 2 ⋅ 1 m + ⋅ 1 m − ∑ x − ∈ D − I ( f ( x + ) = f ( x − ) ) ] = ∑ x + ∈ D + 1 2 ⋅ 1 m + ⋅ [ 2 m − ∑ x − ∈ D − I ( f ( x + ) < f ( x − ) ) + 1 m − ∑ x − ∈ D − I ( f ( x + ) = f ( x − ) ) ] \begin{aligned} \ell_{rank}&=\frac{1}{m^+m^-}\sum_{\boldsymbol{x}^+ \in D^+}\sum_{\boldsymbol{x}^- \in D^-}\left(\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)+\frac{1}{2}\mathbb{I}\left(f(\boldsymbol{x}^+)=f(\boldsymbol{x}^-)\right)\right) \\ &=\frac{1}{m^+m^-}\sum_{\boldsymbol{x}^+ \in D^+}\left[\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)+\frac{1}{2}\cdot\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)=f(\boldsymbol{x}^-)\right)\right] \\ &=\sum_{\boldsymbol{x}^+ \in D^+}\left[\frac{1}{m^+}\cdot\frac{1}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)+\frac{1}{2}\cdot\frac{1}{m^+}\cdot\frac{1}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)=f(\boldsymbol{x}^-)\right)\right] \\ &=\sum_{\boldsymbol{x}^+ \in D^+}\frac{1}{2}\cdot\frac{1}{m^+}\cdot\left[\frac{2}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)+\frac{1}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)=f(\boldsymbol{x}^-)\right)\right] \\ \end{aligned} rank=m+m1x+D+xD(I(f(x+)<f(x))+21I(f(x+)=f(x)))=m+m1x+D+[xDI(f(x+)<f(x))+21xDI(f(x+)=f(x))]=x+D+[m+1m1xDI(f(x+)<f(x))+21m+1m1xDI(f(x+)=f(x))]=x+D+21m+1[m2xDI(f(x+)<f(x))+m1xDI(f(x+)=f(x))]
也就是梯形公式,求得是ROC曲线之上各梯形(矩形)面积之和:
高 = 1 m + 高=\frac{1}{m^+} =m+1
下 底 = 1 m − ∑ x − ∈ D − I ( f ( x + ) < f ( x − ) ) 下底=\frac{1}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right) =m1xDI(f(x+)<f(x))
上 底 = 1 m − ∑ x − ∈ D − I ( f ( x + ) < f ( x − ) ) + 1 m − ∑ x − ∈ D − I ( f ( x + ) = f ( x − ) ) 上底=\frac{1}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)<f(\boldsymbol{x}^-)\right)+\frac{1}{m^-}\sum_{\boldsymbol{x}^- \in D^-}\mathbb{I}\left(f(\boldsymbol{x}^+)=f(\boldsymbol{x}^-)\right) =m1xDI(f(x+)<f(x))+m1xDI(f(x+)=f(x))

2、代价曲线相关解释:见知乎
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值