小兔的棋盘

小兔的叔叔从外面旅游回来给她带来了一个礼物,小兔高兴地跑回自己的房间,拆开一看是一个棋盘,小兔有所失望。不过没过几天发现了棋盘的好玩之处。从起点(0,0)走到终点(n,n)的最短路径数是C(2n,n),现在小兔又想如果不穿越对角线(但可接触对角线上的格点),这样的路径数有多少?小兔想了很长时间都没想出来,现在想请你帮助小兔解决这个问题,对于你来说应该不难吧!

Input
每次输入一个数n(1<=n<=35),当n等于-1时结束输入。
Output
对于每个输入数据输出路径数,具体格式看Sample。
Sample Input
1
3
12
-1
Sample Output
1 1 2
2 3 10
3 12 416024

这道题考的数学逻辑,如果找到规律的话还是很简单的。这道题的规律是经典的卡特兰数。其实对于每一个递进的数字来说,比如5,思考之后可以分为1和4,2和3,3和2,4和1,还有两种直达的,把经过1格的方法乘以经过4格的方法总数,2格的方法总数乘以3格的方法总数……依次类推,就不难发现出规律,卡特兰数*2便是最后的结果,代码如下:

#include <stdio.h>
#include <stdlib.h>
int main()
{
    int i,j,n,k=0;
    long long line[40]={0};
    line[0]=1;line[1]=1;
    for(i=2;i<=35;i++)
    {
        for(j=0;j<i;j++)
        {
            line[i]+=line[j]*line[i-j-1];
        }
    }
    while(scanf("%d",&n)&&n!=-1)
    {
        printf("%d %d ",++k,n);
        printf("%I64d\n",2*line[n]);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值