小兔的叔叔从外面旅游回来给她带来了一个礼物,小兔高兴地跑回自己的房间,拆开一看是一个棋盘,小兔有所失望。不过没过几天发现了棋盘的好玩之处。从起点(0,0)走到终点(n,n)的最短路径数是C(2n,n),现在小兔又想如果不穿越对角线(但可接触对角线上的格点),这样的路径数有多少?小兔想了很长时间都没想出来,现在想请你帮助小兔解决这个问题,对于你来说应该不难吧!
Input1 3 12 -1
1 1 2 2 3 10 3 12 416024
这道题考的数学逻辑,如果找到规律的话还是很简单的。这道题的规律是经典的卡特兰数。其实对于每一个递进的数字来说,比如5,思考之后可以分为1和4,2和3,3和2,4和1,还有两种直达的,把经过1格的方法乘以经过4格的方法总数,2格的方法总数乘以3格的方法总数……依次类推,就不难发现出规律,卡特兰数*2便是最后的结果,代码如下:
#include <stdio.h>
#include <stdlib.h>
#include <stdlib.h>
int main()
{
int i,j,n,k=0;
long long line[40]={0};
line[0]=1;line[1]=1;
for(i=2;i<=35;i++)
{
for(j=0;j<i;j++)
{
line[i]+=line[j]*line[i-j-1];
}
}
while(scanf("%d",&n)&&n!=-1)
{
printf("%d %d ",++k,n);
printf("%I64d\n",2*line[n]);
}
return 0;
}
{
int i,j,n,k=0;
long long line[40]={0};
line[0]=1;line[1]=1;
for(i=2;i<=35;i++)
{
for(j=0;j<i;j++)
{
line[i]+=line[j]*line[i-j-1];
}
}
while(scanf("%d",&n)&&n!=-1)
{
printf("%d %d ",++k,n);
printf("%I64d\n",2*line[n]);
}
return 0;
}