图像处理

图像处理
    图像分类
        单通道图像
            二值图像
            灰度图像
        多通道图像
            索引图像
            彩色图像
    常用方法
        图像变换
            傅立叶变换
            沃尔什变换
            离散余弦变换
            小波变换
        图像编码压缩
            对图像施加某种变换或基于区域、特征进行编码的方法
            最常用的无损压缩算法取空间或时间上相邻像素值的差,再进行编码。如游程码。
            有损压缩算法大都采用图像交换的途径,例如对图像进行快速傅里叶变换或离散的余弦变换。
        图像增强
            空间域
                一些平滑去噪的方法:局部求平均值法和中值滤波
                灰度等级直方图处理
            频域
                低通滤波器可以滤除噪声
                高通滤波器可以增强边缘信息
        图像复原
            图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
        图像分割
            传统方法用到连通域,连通域的问题在于阈值的选择
        图像描述
            主要使用深度学习来解决
        图像分类
            参考
                https://blog.csdn.net/jiaoyangwm/article/details/79120601
            步骤
                特征提取
                特征编码
                特征汇聚
                分类器
                    支持向量机
                    K 近邻
                    神经网络
                    随机森林
        检测
            直线检测:霍夫变换
            边缘检测
                参考
                    https://blog.csdn.net/u013270326/article/details/81412566
                算子
                    Sobel
                    Roberts
                    Laplacian
                    Canny
        特征提取
            参考:https://blog.csdn.net/Assure_zhang/article/details/80503196
    神经网络发展
        贝叶斯网络
        SVN(支持向量机)
        BP:反向传播进行参数调整网络
        CNN:卷积神经网络
        RNN:循环神经网络

发布了46 篇原创文章 · 获赞 12 · 访问量 1万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览