win10安装pytorch-gpu

零、准备工作

机器配置:

  • conda 4.8.2
  • python 3.7
  • GTX 1060
  • CUDA 9.1

笔者已经安装好了anaconda,但是需要将anaconda的相关路径设置到环境变量中,位置在我的电脑-属性-高级系统设置-高级-环境变量。包括如下环境变量(还有一个anaconda_package\condabin):

一、使用conda安装,但是通过清华镜像下载

需要在cmd中输入如下命令,将清华镜像添加到Anaconda的channel中,添加完成之后记得更新conda update conda

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

更换pip源:在文件管理器路径栏中填写%APPDATA%,进入到用户的AppData\Roaming文件夹中,在该文件夹下新建文件夹pip,进入pip中新建文件pip.ini,填入响应的pip源

[global]
index-url = http://pypi.douban.com/simple
[install]
trusted-host=pypi.douban.com

在这里有个坑

官网提供的命令为:

conda install pytorch torchvision cudatoolkit=9.0 -c pytorch

其中,-c pytorch参数指定了conda获取pytorch的channel,在此指定为conda自带的pytorch仓库。因此,只需要将-c pytorch语句去掉,就可以使用清华镜像源快速安装pytorch了。 

二、安装cuda

从上一部开始,在pycharm中写测试程序就应该可以成功了,我的结果显示是1.1.0和0.3.0。

import torch
import torchvision

print(torch.__version__)
print(torchvision.__version__)

笔者不知道cudatoolkit到底代表什么意思,所以又将cuda和cudnn装了一遍

选择CUDA进行安装即可,点击此处,我选择的是Toolkit9.1

 这里的Version只有10和8.1可以选,我选择的是10。

安装中选择自定义安装,取消勾选VS Integration,因为我已经安装好了VS

最后就是配置环境变量

三、安装cudnn

点击此处,选择下载download cudnn,但这里需要你注册一个账号,然后进行问卷之后才可以进行下载页面,我选择的是CUDA9.0,比CUDA的版本稍低一点。

下载之后,解压缩,将CUDNN压缩包里面的bin、clude、lib文件直接复制到CUDA的安装目录下,直接覆盖安装即可。我CUDA的安装目录是默认目录,即 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1

最后在pycharm下写测试程序,我的输出显示True,至此就安装完成。

import torch
 
print(torch.cuda.is_available())

### Windows 11 上安装 PyTorch-GPU 及其对应的 CUDA 配置 #### 虚拟环境准备 为了确保安装过程不会影响其他项目依赖,建议先创建一个新的 Conda 或虚拟环境。以下是基于 Conda 的方法: ```bash conda create -n torch-gpu python=3.9 conda activate torch-gpu ``` 上述命令会创建名为 `torch-gpu` 的新环境并激活它[^4]。 --- #### 显卡驱动更新 在安装 PyTorch-GPU 前,需确认已安装最新的 NVIDIA 显卡驱动程序。可以通过访问 [NVIDIA 官方网站](https://www.nvidia.com/Download/index.aspx),输入显卡型号和操作系统信息来获取最新驱动版本。如果未安装合适的驱动,则可能导致后续 CUDA 功能无法正常工作。 --- #### CUDA 工具包安装 根据引用内容可知,CUDA 是支持 GPU 加速的关键工具包。推荐选择稳定且兼容性强的 CUDA 版本(如 CUDA 11.3)。具体步骤如下: 1. 访问 [NVIDIA CUDA 下载页面](https://developer.nvidia.com/cuda-downloads) 并选择适合的操作系统(Windows 11)以及目标架构。 2. 执行下载后的安装文件,默认选项即可完成基本功能部署。 3. 验证 CUDA 是否成功安装: ```cmd nvcc -V ``` 如果返回类似以下信息则表示安装成功: ``` C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\bin\nvcc.exe: fatal error: no input files compilation terminated. ``` 此外,可通过检查环境变量进一步验证设置是否正确: ```cmd set cuda ``` 此命令应显示路径指向 CUDA 工具包所在目录[^3]。 --- #### PyTorch GPU 版本安装 一旦 CUDA 准备完毕,便可着手安装 PyTorchGPU 支持版本。官方提供了便捷查询链接帮助匹配特定需求组合下的最佳安装指令:<https://pytorch.org/get-started/locally/> 。对于采用 Conda 渠道的情况,通常执行下面语句即能满足多数场景的要求: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -c nvidia ``` 这里特别指定了 `cudatoolkit=11.3` 参数以同步所选 CUDA 版本号[^2]。 完成后可测试导入模块是否无误: ```python import torch print(torch.cuda.is_available()) # 应输出 True 表明检测到可用 GPU 设备 print(torch.version.cuda) # 输出当前加载之 CUDA 编译版本字符串 ``` --- #### 注意事项 仅当计算机配备由 NVIDIA 提供图形处理单元 (GPU) 时才可行尝试以上流程;否则应当考虑转而设立纯 CPU 运作模式下运行框架实例。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值