深度残差网络在2015的ILSVRC比赛中获得取得第一的成绩,ICLR2016上也是重点议题之一。
它主要思想很简单,就是在标准的前馈卷积网络上,加一个跳跃绕过一些层的连接。每绕过一层就产生一个残差块(residual block),卷积层预测加输入张量的残差。如下图所示:
普通的深度前馈网络难以优化。除了深度,所加层使得training和validation的错误率增加,即使用上了batch normalization也是如此。残差神经网络由于存在shorcut connections,网络间的数据流通更为顺畅。ResNet作者认为深度残差网络不太可能由于梯度消失而形成欠拟合,因为这在batch normalized network中就很难出现。残差网络结构的解决方案是,增加卷积层输出求和的捷径连接。
在facebook用Torch实现了ResNet,在github上面可以找到。github地址传送门
参考文献:
“Deep Residual Learning for Image Recognition”, authored by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun.