DTM、DEM、DSM与DOM的概念

DTM、DEM、DSM与DOM的概念 


一、DTM(Digital Terrain Model)
  数字地面模型是利用一个任意坐标系中大量选择的已知x、y、z的坐标点对连续地面的一个简单的统计表示,或者说,DTM就是地形表面形态属性信息的数字表达,是带有空间位置特征和地形属性特征的数字描述。地形表面形态的属性信息一般包括高程、坡度、坡向等。
  数字地形模型(DTM, Digital Terrain Model)最初是为了高速公路的自动设计提出来的(Miller,1956)。此后,它被用于各种线路选线(铁路、公路、输电线)的设计以及各种工程的面积、体积、坡度计算,任意两点间的通视判断及任意断面图绘制。在测绘中被用于绘制等高线、坡度坡向图、立体透视图,制作正射影像图以及地图的修测。在遥感应用中可作为分类的辅助数据。它还是的基础数据,可用于土地利用现状的分析、合理规划及洪水险情预报等。在军事上可用于导航及导弹制导、作战电子沙盘等。对DTM的研究包括DTM的精度问题、地形分类、数据采集、DTM的粗差探测、质量控制、数据压缩、DTM应用以及不规则三角网DTM的建立与应用等。


二、DEM(Digital Elevation Matrix)
     数字高程矩阵。GIS、地图学中的常用术语。
  数字高程模型(Digital Elevation Model,缩写DEM)是一定范围内规则格网点的平面坐标(X,Y)及其高程(Z)的数据集,它主要是描述区域地貌形态的空间分布,是通过等高线或相似立体模型进行数据采集(包括采样和量测),然后进行数据内插而形成的。DEM是对地貌形态的虚拟表示,可派生出等高线、坡度图等信息,也可与DOM或其它专题数据叠加,用于与地形相关的分析应用,同时它本身还是制作DOM的基础数据。
  DEM是用一组有序数值阵列形式表示地面高程的一种实体地面模型,是数字地形模型(Digital Terrain Model,简称DTM)的一个分支。一般认为,DTM是描述包括高程在内的各种地貌因子,如坡度、坡向、坡度变化率等因子在内的线性和非线性组合的空间分布,其中DEM是零阶单纯的单项数字地貌模型,其他如坡度、坡向及坡度变化率等地貌特性可在DEM的基础上派生。DTM的另外两个分支是各种非地貌特性的以矩阵形式表示的数字模型,包括自然地理要素以及与地面有关的社会经济及人文要素,如土壤类型、土地利用类型、岩层深度、地价、商业优势区等等。实际上DTM是栅格数据模型的一种。它与图像的栅格表示形式的区别主要是:图像是用一个点代表整个像元的属性,而在DTM中,格网的点只表示点的属性,点与点之间的属性可以通过内插计算获得。
  建立DEM的方法有多种。从数据源及采集方式讲有:(1)直接从地面测量,例如用GPS、全站仪、野外测量等;根据航空或航天影像,通过摄影测量途径获取,如立体坐标仪观测及空三加密法、解析测图、数字摄影测量等等;(3)从现有地形图上采集,如格网读点法、数字化仪手扶跟踪及扫描仪半自动采集然后通过内插生成DEM等方法。DEM内插方法很多,主要有分块内插、部分内插和单点移面内插三种。目前常用的算法是通过等高线和高程点建立不规则的三角 网(Triangular Irregular Network, 简称TIN)。然后在TIN基础上通过线性和双线性内插建DEM。
  由于DEM描述的是地面高程信息,它在测绘、水文、气象、地貌、地质、土壤、工程建设、通讯、气象、军事等国民经济和国防建设以及人文和自然科学领域有着广泛的应用。如在工程建设上,可用于如土方量计算、通视分析等;在防洪减灾方面,DEM是进行水文分析如汇水区分析、水系网络分析、降雨分析、蓄洪计算、淹没分析等的基础; 在无线通讯上,可用 于蜂窝电话的基站分析等等


三、DSM(Digital Surface Model)
  数字表面模型(Digital Surface Model,缩写DSM)是指包含了地表建筑物、桥梁和树木等高度 的地面高程模型。和DEM相比,DEM只包含了地形的高程信息,并未包含其它地表信息,DSM是在DEM的基础上,进一步涵盖了除地面以外的其它地表信息的高程。在一些对建筑物高度有需求的领域,得到了很大程度的重视。

是最真实地表达地面起伏情况,可广泛应用于各行各业。如在森林地区,可以用于检测森林的生长情况;在城区,DSM可以用于检查城市的发展情况;特别是众所周知的巡航导弹,它不仅需要数字地面模型,而更需要的是数字表面模型,这样才有可能使巡航导弹在低空飞行过程中,逢山让山,逢森林让森林。

 

四、DOM(Digital Orthophoto Map)

    利用数字高程模型(DEM)对航空航天影像进行正射纠正、接边、色彩调整、镶嵌,并按照一定范围裁切生成的数字正射影像数据集。

 

参考:https://blog.csdn.net/ihadl/article/details/7597274

### 如何从DEM生成DTMDSM #### 数字地形模型(DTM) 数字地形模型(DTM)表示的是裸露地球表面的高程,即移除了所有植被和其他人为结构后的地形特征。为了从DEM生成DTM,通常需要执行以下操作: - **数据采集**:通过激光雷达(LiDAR)或其他遥感技术收集原始点云数据。 - **分类处理**:利用软件工具对点云中的不同类别进行区分,识别并分离出地面点其他非地面点(如建筑物、树木等)[^1]。 ```python import laspy import numpy as np def classify_ground_points(las_file_path): # 加载LAS/LAZ文件 las = laspy.read(las_file_path) # 获取XYZ坐标数组 points = np.vstack((las.x, las.y, las.z)).transpose() # 使用算法过滤得到地面点索引(此处省略具体实现) ground_indices = filter_algorithm(points) return points[ground_indices] filtered_ground_points = classify_ground_points('path_to_lidar_data.laz') ``` 完成上述过程后,可以将筛选出来的地面点导出为新的栅格格式文件,从而获得DTM。 #### 数字表面模型(DSM) 对于DSM而言,则不需要像创建DTM那样去除地面上的对象。实际上,DSM就是基于完整的LiDAR扫描结果构建而成,保留了所有的自然人工特征的高度信息。如果已经有了包含全部要素的DEM,那么这个DEM本身就相当于一个初步版本的DSM。然而,要使该模型更加精确,可能还需要额外的数据增强工作,比如加入更高分辨率的城市建筑轮廓数据或最新的卫星图像分析成果[^3]。 ```python from osgeo import gdal def create_dsm_from_dem(dem_raster_path, output_path): dem_dataset = gdal.Open(dem_raster_path) band = dem_dataset.GetRasterBand(1) array = band.ReadAsArray() # 对于已经存在的DEM来说,这里可以直接保存作为DSM, # 或者根据实际情况调整数值范围以适应特定应用场景 driver = gdal.GetDriverByName('GTiff') outdata = driver.Create(output_path, dem_dataset.RasterXSize, dem_dataset.RasterYSize, 1, gdal.GDT_Float32) outdata.SetGeoTransform(dem_dataset.GetGeoTransform()) outdata.SetProjection(dem_dataset.GetProjection()) # 同样的地理变换参数 outband = outdata.GetRasterBand(1).WriteArray(array) outdata.FlushCache() # 将缓存写入磁盘 del outdata create_dsm_from_dem('input_dem.tif', 'output_dsm.tif') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值