1.1 Tikhonov Regularization
Tikhonov正则化方法由Andrey Tikhonov命名,最常用来进行不适定问题的正则化。在统计学中,这种方法称为“岭回归”,在机器学习领域,被称为“weight decay”。在更多的独立研究中,同样称为Tikhonov-Miller方法、Phillips-Twomey方法、约束线性反演方法和线性正则化方法。Tikhonov正则化方法与非线性最小二乘问题的Levenberg-marquardt算法紧密相关的。
假设一个已知的矩阵A和向量b,我们希望求得一个向量x,如下表示:
Ax=b (1)
求解x的标准方法为线性回归经典最小二乘。但是,如果没有x满足该等式或者不止一组x满足,这就意味着解不唯一,即该问题称为不适定问题(ill-posed problems)。像这样的案例中,经典最小二乘估计值会导致过拟合或者获得方程的欠定解。很多的现实世界中的现象都具有正向低通滤波的效果,其中x通过A映射到b。因此,在求解反演问题时,反演问题的解决方法就存在类似高通滤波器放大噪声的趋势(特征值/奇异值在反向映射中值很大而在正向映射中值很小)。经典最小二乘的方法的基本原理是:残差平方和最小,因此可表示为如下形式:
min:Ax-b22 (2)
为了获得具有理想性质的特解,可以在此最小化中包含了正则化项:
Ax-b22+Γx22 (3)
在很多的案例中,直接将Tikhonov矩阵Γ作为一个确定的矩阵(Γ=αI),这可以获得一个较小的范数解,这是著名的L2正则化。这种正则化改进了问题的条件,从而获得直接的数值解。这种解的显示表达为:
x=(ATA+ΓTΓ)-1ATb (4)
这种正则化的结果最终受到矩阵Γ的影响。如果矩阵Γ=0的话,上述的正则化解就是经典最小二乘的解。
L2正则化方法除了分解在线性回归中使用外,也被应用与其他的领域:基于逻辑回归或支持向量机的分类和矩阵中。
1.2 Generalized Tikhonov regularization
对于x和数据误差的多元正态分布,可以通过应用变量转化使误差减小。同样地,可以获得以下x的最小目标方程:
Ax-bp2+x-x0Q2 (5)
其中,x-x0Q2表示含权范数xTQx(Mahalanobis distance)。基于贝叶斯解释,P是b的协方差矩阵的逆阵,x0是x的期望值,Q是x的协方差矩阵的逆阵。Tikhonov矩阵的因式分解式为:Q=ΓTΓ(Cholesky 分解)并且认为其为白化滤波器。
这种广义问题的最优化解可以显示地表示为:
x*=(ATPA+Q)-1(ATPb+Qx0) (6a)
或者等价为:
x*=x0+ATPA+Q-1ATPb-Ax0 (6b)
1.3 Relation to singular-value decomposition and Wiener filter
当Γ=αI时,可以使用奇异值分解对最小二乘解进行分析。则Tikhonov正则化解可以奇异值分解为以下形式:
x=VDUTb (7)
其中,D是一个对角阵:Dii=σiσi2+α2
最后,其维纳滤波器(Wiener Filter)的相关表达式为:
x=i=1qfiuiTbσivi