大模型各参数的推理、训练和微调分别需要多大显存?

大模型各参数的推理、训练和微调分别需要多大显存?

2025年4月29日,阿里开源新一代通义千问模型 Qwen3。其中包含两个MoE模型的权重:Qwen3-235B-A22B,一个拥有 2350 多亿总参数和 220 多亿激活参数的大模型,以及Qwen3-30B-A3B,一个拥有约 300 亿总参数和 30 亿激活参数的小型 MoE 模型。此外,六个 Dense 模型也已开源,包括 Qwen3-32BQwen3-14BQwen3-8BQwen3-4BQwen3-1.7BQwen3-0.6B

在这里插入图片描述
在这里插入图片描述

影响因素

那么对各个模型而言,在推理、训练和LoRA微调过程中的显存需求该如何计算呢?LlamaFactory的官网有大模型显存需求分析工具,但是已经很久没有更新了:显存计算器 - 大模型显存需求分析工具 | LlamaFactory | LlamaFactory。大模型的显存需求主要受到以下几个变量的直接影响:

  1. 模型的参数量;
  2. 训练/推理时的精度模式(FP32/FP16/BF16/INT8,分别代表32 位单精度浮点数/16 位半精度浮点数/16 位脑浮点数/8 位整型量化);
  3. 训练所采用的优化器的类别(SGD/AdamW)

推理显存需求

在推理阶段,显存主要用于存储模型的权重,所以粗略的计算方法就是 显存占用=参数数量 * 类型大小,此处以BF16类型的Qwen3-8B模型为例,因为BF16为16 位脑浮点数,每个参数需要占用2个字节,8B个参数一共需要8B×2=16GB,也就是说存储模型的权重就需要大约16GB的显存空间了,此外,还有包括KV Cache(键值缓存)等需要用到显存资源的部分。

训练显存需求

训练阶段一般使用的参数类型都是FP32BF16,而显存主要包括两个部分,分别是模型状态显存(Model States Memory)和残余状态显存(Residual States Memory),前者主要包含模型参数梯度以及优化器的状态参数,其中梯度等于模型参数的一倍。

模型状态显存 = (模型参数 + 梯度) * 参数类型 + 优化器状态参数

而常见的优化器以SGDAdamW为例,前者维护的是梯度状态,后者维护的是梯度一阶矩+二阶矩,所以SGB优化器占用显存和全精度(FP32)模型权重一样,AdamW每个参数需要占用八个字节,因为需要维护三个状态,所以占用显存是全精度模型权重的3倍。

对于BF16类型的Qwen3-8B模型而言,如果使用的是AdamW优化器,则一共需要

(8B + 8B) * 2 + 8B * 4 * 3 = 96 GB

残余状态显存则包括了激活值(用于反向传播梯度计算)、临时缓冲区,主要还是激活值中受到batch size和序列长度的影响。对这部分感兴趣的读者可以直接阅读[参考 1]

LoRA微调显存需求

Lora节省显存的方式是通过冻结模型主体部分,从而使得优化器中只存储低秩矩阵的参数。假设低秩分解时 r < < d m o d e l r << d_{model} r<<dmodel,所需要优化的参数量为不到原模型的1%。

模型状态显存 = (模型参数 + 梯度 * 0.01) * 参数类型 + 优化器状态参数 * 0.01

对于BF16类型的Qwen3-8B模型而言,如果使用的是AdamW优化器,则一共需要

(8B + 8B * 0.01) * 2 + 8B * 4 * 3 *0.01 = 17.12GB

对残余部分所占用的显存则需要根据输入的样本大小来计算。

开源工具:

模型训练显存占用计算工具

参考:

  1. 模型训练显存到底怎么算

  2. 大模型不同参数下的模型显存计算公式

  3. LoRA微调大模型显存占用分析

  4. 大模型参数量和占的显存怎么换算-高赞回答

<think>嗯,用户想了解如何使用Ollama来训练微调大模型。首先,我需要回忆一下Ollama的基本信息。Ollama主要是用来本地运行大型语言模型的工具,支持种模型如Llama、Mistral等。用户可能已经知道如何用Ollama运行模型,现在想进一步了解如何训练微调自己的模型。 首先,我得确认Ollama是否支持训练微调功能。根据之前的了解,Ollama主要专注于模型的部署运行,而不是训练训练大模型通常需要更的资源框架,比如PyTorch、TensorFlow或者Hugging Face的Transformers库。可能用户误以为Ollama可以直接进行训练,需要澄清这一点。 接下来,用户可能需要了解如何准备数据,选择合适的框架,进行模型训练,然后如何将训练好的模型集成到Ollama中使用。需要分步骤解释,从数据准备到微调,再到转换模型格式,最后加载到Ollama。 另外,用户可能对微调的具体方法感兴趣,比如LoRA(低秩适应)或者QLoRA,这些技术可以在资源有限的情况下进行微调。需要简要介绍这些方法,并给出示例代码,比如使用Hugging Face的库进行微调。 还需要注意模型格式的转换,Ollama使用的是GGUF或GGML格式,所以训练后的PyTorch模型需要转换成这种格式,可能需要用到llama.cpp这样的工具。这里要详细说明转换步骤,确保用户能够操作。 可能遇到的误区是用户直接使用Ollama进行训练,但实际上需要依赖其他工具。需要明确指出Ollama的角色,并引导用户使用正确的工具链。同时,提醒用户训练微调所需的硬件资源,比如GPU的重要性,避免他们在资源不足的情况下尝试训练大型模型。 最后,确保回答结构清晰,分步骤说明,并给出示例命令代码,帮助用户逐步完成整个过程。同时要强调Ollama本身不提供训练功能,而是需要结合其他框架,避免混淆。</think>以下是关于Ollama运行大模型训练微调技术的分步说明: ### 一、基础认知 1. **Ollama定位** Ollama是专注于大模型**本地化部署推理**的工具,原生不提供训练功能,其核心价值在于: - 提供预编译的GGUF/GGML格式模型 - 实现CPU/GPU混合推理优化 - 简化模型交互接口 2. **训练层级划分**: ```mermaid graph LR A[预训练] --> B[指令微调] B --> C[领域适配] C --> D[量化部署] ``` ### 二、完整训练流程(需配合其他框架) #### 步骤1:环境准备 ```bash # 示例环境配置 conda create -n llama_train python=3.10 conda activate llama_train pip install torch==2.0.1 transformers==4.33.0 datasets==2.14.4 peft==0.5.0 ``` #### 步骤2:数据准备 ```python # 数据集格式示例(JSONL) { "instruction": "解释量子纠缠", "input": "", "output": "量子纠缠是量子力学中..." } ``` #### 步骤3:选择微调方法 **LoRA微调示例**: ```python from peft import LoraConfig, get_peft_model lora_config = LoraConfig( r=8, lora_alpha=16, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" ) model = get_peft_model(base_model, lora_config) ``` #### 步骤4:训练执行 ```bash # 使用Hugging Face Trainer accelerate launch --num_processes 4 \ --mixed_precision bf16 \ train.py \ --model_name meta-llama/Llama-2-7b-chat-hf \ --batch_size 2 \ --gradient_accumulation_steps 8 ``` ### 三、Ollama集成流程 1. **模型格式转换** ```bash # 使用llama.cpp转换 ./quantize ./models/ggml-model-f16.gguf ./models/ggml-model-q4_0.gguf q4_0 ``` 2. **创建Modelfile** ```text FROM ./finetuned-llama-7b-q4_0.gguf PARAMETER num_ctx 4096 PARAMETER temperature 0.7 ``` 3. **部署运行** ```bash ollama create mymodel -f Modelfile ollama run mymodel ``` ### 四、关键注意事项 1. **硬件需求**: - 7B模型微调需24GB+显存 - 使用QLoRA可将需求降至12GB - CPU训练效率极低(不推荐) 2. **常见误区**: - 误将Ollama作为训练框架 - 未正确配置Flash Attention - 忽视梯度累积设置 ### 五、进阶技巧 1. **混合精度训练**: ```python torch.cuda.amp.autocast() scaler = GradScaler() ``` 2. **监控工具**: ```bash wandb login ``` 3. **量化部署优化**: ```text GGUF支持种量化类型: - q4_0:平衡选择 - q5_k_m:高质量输出 - q2_k:最小内占用 ``` 建议在完整训练流程中结合NVIDIA的NeMo或DeepSpeed等优化框架,可提升大规模训练的稳定性。实际案例显示,使用LoRA微调Llama2-7B模型在A100上约需6-8小时完成领域适配训练
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值