mask_generator.generate 函数报错AttributeError: ‘Image‘ object has no attribute ‘shape‘

import cv2
import numpy as np
import torch
import matplotlib.pyplot as plt
from PIL import Image

image1 = cv2.imread('100000726.jpg')
#image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image1= Image.fromarray(cv2.cvtColor(image1,cv2.COLOR_BGR2RGB))

调用segment-anything 模型masks = mask_generator.generate(img_array)
报错“ ‘Image’ object has no attribute ‘shape’”

改成:

from PIL import Image
import matplotlib.pyplot as plt
 
# 图片路径
image_path = '100000726.jpg'
 
# 读取图片
image = Image.open(image_path)
 
# 使用matplotlib展示图片
plt.imshow(image)
plt.axis('off')  # 不显示坐标轴
plt.show()

调用segment-anything 模型masks = mask_generator.generate(image)
也报错:
AttributeError: ‘JpegImageFile’ object has no attribute ‘shape’

解决办法:
img_array = np.array(image)
转换为numpy即可输入mask_generator.generate(ima_array)

当你遇到`AttributeError: 'Sequential' object has no attribute 'fit_generator'`这个错误时,通常是在尝试对Keras的`Sequential`模型进行数据生成器训练(如`ImageDataGenerator`)。这个问题可能是由于以下几个原因: 1. **版本兼容性**:`fit_generator`方法在Keras早期版本中可用,但在某些较新的版本中可能已被移除或合并到其他方法中。检查你的Keras和TensorFlow版本是否需要更新。 2. **导入错误**:确保你在使用`fit_generator`前已经正确导入了`keras.preprocessing.image.ImageDataGenerator`。 3. **模型实例化**:确认你创建的是一个支持训练的模型。有些预训练模型(如VGG、Inception等)默认是用于预测的,它们可能没有`fit_generator`方法。 4. **模型修改**:如果你对`Sequential`模型进行了自定义扩展,可能会意外地覆盖了`fit_generator`的定义。检查是否有无意中删除或重命名了该方法。 5. **回调函数**:确保`fit_generator`的调用不是在一个使用`ModelCheckpoint`, `EarlyStopping`等回调函数的地方,因为这些回调可能改变了训练流程。 为了修复这个问题,你可以试试以下步骤: - 确保使用的是正确的Keras版本,如果需要更新,看官方文档是否有替代方法。 - 检查`fit_generator`方法的使用是否正确,例如:`model.fit(data_gen.flow(x_train, y_train), steps_per_epoch=len(x_train) / batch_size, epochs=num_epochs)`. - 如果在自定义模型中,确认`Sequential`的子类实现了`fit_generator`方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值