5、费马小定理

 

一、课程目标

  1. 费马小定理
  2. 证明
  3. 应用

二、目标详解

1、费马小定理

对于质数p,以及任意与p互质的正整数 a,都有a^(p-1) ≡ 1 (mod p)

例子:

p=2, a=3,   a^(p-1) = 3 ≡ 1 (mod 2)
p=3, a=4, a^(p-1) = 16 ≡ 1 (mod 3)
p=5, a=2, a^(p-1) = 16 ≡ 1 (mod 5)
......

2、同余法证明

定义-完全剩余系

  • 定义:m为正整数, a1 a2 … am中任意两个数对m都不同余,则这m个正数对m构成完全剩余系
  • 最小:0 1 … (m-1)为m的最小非负完全剩余系

特性-同余乘法:a ≡ b (mod m),c ≡ d (mod m) => ac ≡ bd (mod m)

特性-同余除法:ac ≡ bc ( mod m),若(c, m)=1, 则a ≡ b (mod m)

`引理1:m为整数,设a1 a2 … am为m的一个完全剩余系,若(b, m)=1,则ba1 ba2 … b*am也构成m的一个完全剩余系

反证:

假设存在b*a[i]和b*a[j]同余,即 b* a[i] ≡ b*a[j] (mod m)
由于(b, m)=1,根据除法特性有a[i] ≡ a[j] (mod m),与假设不符

费马小定理证明

构造质数p的完全剩余系P={1, 2, ... (p-1)},
由于(a, p)=1,则A={a, 2*a, ..., (p-1)*a}也是一个完全剩余系  <-- 引理2

令Y为A的乘积=a*2a*3a*...*(p-1)a = a^(p-1) * (p-1)!
由于Y是完全剩余系 =>  Y ≡ (p-1)! (mod m) 
也即:a^(p-1) * (p-1)! ≡ (p-1)! (mod m) 

由于p是质数,则((p-1)!, p) = 1,根据除法特性两边同除,得到
a^(p-1)  ≡  1 (mod p)
证毕

3、应用

计算2^100 除以 13的余数,即 2^100 ≡ x (mod 13)。

如果直接求2^100,需要用到大数计算。

由于13为质数,并且(2, 13)=1,我们考虑用费马小定理加速。

根据费马小定理有:2^12 ≡ 1 (mod 13)

而100 = 12*8 + 4,因此2^100 = (2^12)^18 * 2^4

根据同乘性和同幂性,有2^100 ≡ 1*16 (mod 13) = 3
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值