如上面几位所说,用CNN train model 数据很重要很重要很重要,我就来分享一些公开的数据。1. 李子青组的 CASIA-WebFace(50万,1万个人). 需申请.Center for Biometrics and Security Research2. 华盛顿大学百万人脸MegaFace数据集. 邮件申请, 是一个60G的压缩文件. MegaFace3. 南洋理工 WLFDB. (70万+,6,025). 需申请. WLFDB : Weakly Labeled Faces Database4. 微软的MSRA-CFW ( 202792 张, 1583人). 可以直接通过OneDrive下载.MSRA-CFW: Data Set of Celebrity Faces on the Web5. 汤晓欧实验室的CelebA(20万+), 标注信息丰富. 现在可以直接从百度网盘下载 Large-scale CelebFaces Attributes (CelebA) Dataset6. FaceScrub. 提供图片下载链接(100,100张,530人). vintage - resources
深度学习深似海、尤其是在图像人脸识别领域,最近几年的顶会和顶刊常常会出现没有太多的理论创新的文章,但是效果摆在那边。
DeepID是深度学习方法进行人脸识别中的一个简单,却高效的一个网络模型,其结构的特点可以概括为两句话:1、训练一个多个人脸的分类器,当训练好之后,就可以把待测试图像放入网络中进行提取特征,2对于提取到的特征,然后就是利用其它的比较方法进行度量。具体的论文可以参照我的一篇论文笔记:【深度学习论文笔记】Deep Learning Face Representation from Predicting 10,000 Classes
首先我们完全参考论文的方法用Caffe设计一个网络结构:
其拓扑图如图1所示: