数值逼近高分课程设计——Runge,D1,最佳平方逼近,复化积分

目录
摘要 3
关键词 4
一、Runge现象 4
1.1 问题重述 4
1.2 方法介绍 4
1.3 实例展示 5
1.4 结果分析 7
1.5 改进方法 8
二、D1样条插值 8
1.1 问题重述 8
1.2 方法介绍 9
1.3 实例展示 11
1.4 结果分析 12
三、最佳平方逼近 12
1.1 问题重述 12
1.2 方法介绍 13
1.3 实例展示 14
1.4 结果分析 15
1.5 改进方法 16
四、复化求积公式 16
1.1 问题重述 16
1.2 方法介绍 16
1.3 实例展示 17
1.4 结果分析 17
1.5 改进方法 18
参考文献 19
附录(源程序) 19

摘要
随着大数据时代的到来,人们需要处理的数据越来越多,所需要考虑的条件因素也在增加,即模型的参数的增加,那么必然会导致所列方程的维度或者广度的增加。在工程方面,人们往往需要对一些较为复杂的,解析性质较为一般的函数进行一些基本处理,比如求该函数在一些未知点的函数值,求该函数的大致变化趋势,或者对该函数进行积分,而当函数较为复杂时,以上三个基本需求会很难实现,因此,就有学者想出是否可以用多项式函数来对其进行逼近,近似,即把原本复杂的,难以求解的函数转化为解析性质较好(比如可以无穷阶可导等等)的多项式函数,因此以拉格朗日,内维尔,牛顿为代表,分别提出了拉格朗日插值发,内维尔途径,牛顿途径,并且分等距节点插值和不等距节点查值加以考虑,在一定情况下,这三种方法得到的多项式和原函数接近程度较好,可以在某段区间内较好的代替原函数。
但是1901年,Runge发现:对于某些即使解析性态较为良好的原函数,如果在等距插值时,增加插值节点个数,反而不能很好的接近被插函数,该现象被成为Runge现象,为了解决这个问题,有的学者提出了样条插值,即把区间等分之后,在每一个小区间内,把曲线近似为一个三次函数,并且保证,在端点处,插值多项式的一阶,二阶导函数连续,这样就可以很好的解决Runge现象,针对在区间端点满足不一样的条件,我们有三种情况:1.D1样条;2.D2样条;3.周期样条,其中D2样条在某个特殊情况成为自然样条,在这里,我们重点介绍D1样条,该方法在工程中比较具有应用价值[1]。
在上面我们到这些方法对原函数的近似效果较为良好,那么我们是如何来刻画这个近似效果呢,在这之前,我们可能是通过画图,或者随机寻找一系列点的方式来判断近似效果的优劣,但是这种刻画方式太过主观,没有太多的理论支撑,后来,我们根据牛顿插值途径,得到了误差函数的公式,但是由于涉及到n+1阶求导,所以这仅仅是理论上的分析,很难运用到工程中去,因此我们在空间中引入范数,当用简单的函数做逼近时,逼近的好坏则由范数来控制。这样的做法将会有效的避免那些在个别点上逼近的很好,但整体逼近很差的情况发生,我们一般采用的刻画方法为最佳一致逼近和最佳平方逼近,本文将根据一个简答的例子,来深入分析最佳平方逼近的逼近效果,误差分析。
最终,本文将来解决函数积分问题,因为在工程中会遇到很多超越函数积分问题,对于该类函数,目前我们可能很难或者无法算出其积分的准确值,那么我们就想如果存在一个对其逼近良好的多项式函数,那么是否可以认为改多项式函数的积分值可以近似等于原函数的积分值,因此,我们采用了拉格朗日插值发来得到原函数的近似多项式函数,然后在节点个数为2,3,5(对应对区间进行1,2,4等分)的时候分别给出了相应的积分公式:梯形公式,Simpson公式,Cotes公式,但是我们对其进行误差分析以后,发现精度并不能达到我们的要求,因此和前面插值一样,我们想到了,对区间进行分段积分的方式,即复化积分公式,然后我们分析了相应的误差,发现精度大大提高,得出如下结论:随着区间的等分数量的升高而升高,并且在等分区间个数一定的情况下,Cotes公式计算结果要优于Simpson公式的计算结果,Simpson公式计算结果要优于梯形公式的计算结果。

关键词:龙格现象,D1样条插值,最佳平方逼近,复化积分公式,matlab

一、Runge现象
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
图1 runge现象

在这里插入图片描述
图2 随机取点得到的误差

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、D1样条插值
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
4.结果分析
可以看出所画图像经过型值点,并且较为光滑,符合D1样条插值的要求,可以很好的算出S(5)的值,其实,我们可以事先看出该函数为f(x)=lnx,则,ln5=1.6094379124341,和我们算出的S(5)非常接近,可以看出我们的算法是正确的

三、最佳平方逼近
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、复化积分公式
1.问题重述
用复化积分公式计算积
在这里插入图片描述

2.方法介绍
在第二问的证明及使用中可以发现,用分段的低阶的方法有时候比高阶的效果更好。
在使用和证明中发现,高阶Newton-Cotes公式具有较高的代数精度,但对传播误差的控制是很差的,因此其计算效果也不理想.如果采用低阶方法,则截断误差很大,又常常达不到精度要求。
影响截断误差的一个很重要的参量求积区间的长度,如果积分区间越小,则求积公式的截断误亦越小。这就启发我们先将区间等分,然后在每一小区间上采用低节点的公式,再将其集中起来,这样得到的公式称为复化求积公式。它是提高求积公式精度的重要手段之一。
在这里插入图片描述
在这里插入图片描述
4.结果分析
运行结果正确,和书上样表算出的答案相同,说明计算过程,计算思路,matlab代码是正确的。
在这里插入图片描述

通过运行结果,我们可以看出,当区间的划分精度相同时(即横向比较),复化Cotes的精度要高于复化Simpson,而复化Simpson的精度要高于复化梯形公式,但是如果我们分别观察三种复化公式随n的变化而变化的情况(即纵向比较),我们可以看出复化梯形公式收敛速度较快,而复化Simpson和复化Cotes相对较慢,因此如果采用复化梯形公式,可以将n取值大一些,而如果采用复化Simpson和复化Cotes公式,可以将n取值小一些。

5.改进方法
思路一:
我们可以采取之前改进Runge现象的方法,不使用等距节点的形式,而是采用不等距节点的方式,我们可以预先对被积函数进行预处理,即求二阶导,找出导数变化较大和较小的地方,对于导数变化较大的地方,可以多取一些节点,对于导数变化较小的地方,可以少取一些节点。

思路二:
把复化公式进行组合,和上面一样,我们可以预先对被积函数进行预处理,即求二阶导,找出导数变化较大和较小的地方,对于导数变化较大的地方,可以采用复化Cotes公式或者化Simpson公式,对于导数变化较小的地方,可以采用复化梯形公式。

参考文献
[1]李珍,魏利胜,程运昌.基于样条插值的不完备信息系统参数估计[J].安徽工程大学学报,2015,30(05):69-77.
[2]何旭初,唐述剑译《函数构造论》(下册),科学出版社,1959年
[3]刘园园,蒋艳杰.复化Simpson公式的收敛速度[J].华北电力大学学报(自然科学版),2010,37(02):109-112.
[4]杜跃鹏,肖泽昌.改进Simpson公式及误差分析[J].高师理科学刊,2008(04):27-30.
[5]蒋尔雄,赵风光,苏仰峰 .数值逼近. 上海-复旦大学出版社2007.8(2016.9重印)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值