PLS系列001 数据预处理

1 数据预处理

1.1 均值|方差|协方差|相关系数

矩阵数据表 X = ( x 1 , x 2 , ⋯   , x i , ⋯   , x p ) X=({{x}_{1}},{{x}_{2}},\cdots ,{{x}_{i}},\cdots ,{{x}_{p}}) X=(x1,x2,,xi,,xp)是一个 n × p n\times p n×p (m行n列)矩阵, x j {{x}_{j}} xj代表一个列向量,是一个 n n n维空间点,有 p p p个这样的空间点。
变量 x j {{x}_{j}} xj均值(一列的均值)
x ˉ j = 1 n ∑ i = 1 n x i j {{\bar{x}}_{j}}=\frac{1}{n}\sum\limits_{i=1}^{n}{{{x}_{ij}}} xˉj=n1i=1nxij
变量 x j {{x}_{j}} xj方差(一列的方差)
s j 2 = V a r ( x j ) = 1 n - 1 ∑ i = 1 n ( x i j − x ˉ j ) 2 s_{j}^{2}=Var({{x}_{j}})=\frac{1}{n\text{-}1}\sum\limits_{i=1}^{n}{{{({{x}_{ij}}-{{{\bar{x}}}_{j}})}^{2}}} sj2=Var(xj)=n-11i=1n(xijxˉj)2
V a r ( X ) = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 = 1 n − 1 ∑ i = 1 n ( X i 2 + X ˉ 2 − 2 X i X ˉ )             = 1 n − 1 ( ∑ i = 1 n X i 2 + ∑ i = 1 n X ˉ 2 − 2 ∑ i = 1 n X i X ˉ )             = 1 n − 1 ( ∑ i = 1 n X i 2 + n X ˉ 2 − 2 X ˉ ∑ i = 1 n X i )             = 1 n − 1 ( ∑ i = 1 n X i 2 + 1 n ( ∑ i = 1 n X i ) 2 − 2 n ( ∑ i = 1 n X i ) 2 )            = 1 n − 1 ( ∑ i = 1 n X i 2 − 1 n ( ∑ i = 1 n X i ) 2 ) \begin{aligned} & Var(X)=\frac{1}{n-1}\sum\limits_{i=1}^{n}{{{({{X}_{i}}-\bar{X})}^{2}}}=\frac{1}{n-1}\sum\limits_{i=1}^{n}{(X_{i}^{2}+{{{\bar{X}}}^{2}}-2{{X}_{i}}\bar{X})} \\ & \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{n-1}\left( \sum\limits_{i=1}^{n}{X_{i}^{2}}+\sum\limits_{i=1}^{n}{{{{\bar{X}}}^{2}}}-2\sum\limits_{i=1}^{n}{{{X}_{i}}\bar{X}} \right) \\ & \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{n-1}\left( \sum\limits_{i=1}^{n}{X_{i}^{2}}+n{{{\bar{X}}}^{2}}- \color{red}{2\bar{X}\sum\limits_{i=1}^{n}{{{X}_{i}}}} \right) \\ \\ & \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{n-1}\left( \sum\limits_{i=1}^{n}{X_{i}^{2}}+\frac{1}{n}{{\left( \sum\limits_{i=1}^{n}{{{X}_{i}}} \right)}^{2}}-\color{red}{\frac{2}{n}{{\left( \sum\limits_{i=1}^{n}{{{X}_{i}}} \right)}^{2}}} \right) \\ & \ \ \ \ \ \ \ \ \ \ \ \text{=}\frac{1}{n-1}\left( \sum\limits_{i=1}^{n}{X_{i}^{2}}-\frac{1}{n}{{\left( \sum\limits_{i=1}^{n}{{{X}_{i}}} \right)}^{2}} \right) \\ \end{aligned} Var(X)=n11i=1n(XiXˉ)2=n11i=1n(Xi2+Xˉ22XiXˉ)           =n11(i=1nXi2+i=1nXˉ22i=1nXiXˉ)           =n11(i=1nXi2+nXˉ22Xˉi=1nXi)           =n11i=1nXi2+n1(i=1nXi)2n2(i=1nXi)2           =n11i=1nXi2n1(i=1nXi)2

标准差计算可【方便编程】:
std ( X ) = V a r ( X ) = 1 n − 1 ( ∑ i = 1 n X i 2 − 1 n ( ∑ i = 1 n X i ) 2 ) \text{std}(X)=\sqrt{Var(X)}\text{=}\sqrt{\frac{1}{n-1}\left( \sum\limits_{i=1}^{n}{X_{i}^{2}}-\frac{1}{n}{{\left( \sum\limits_{i=1}^{n}{{{X}_{i}}} \right)}^{2}} \right)} std(X)=Var(X) =n11i=1nXi2n1(i=1nXi)2
变量 x i {{x}_{i}} xi x j {{x}_{j}} xj协方差(即将第 i i i行第 j j j列元素减去第 j j j列均值后乘以第 i i i行第 k k k列元素减去第 k k k列均值)
C o v ( x j , x k ) = s j k = 1 n ∑ i = 1 n ( x i j − x ˉ j ) ( x i k − x ˉ k ) Cov({{x}_{j}},{{x}_{k}})={{s}_{jk}}=\frac{1}{n}\sum\limits_{i=1}^{n}{({{x}_{ij}}-{{{\bar{x}}}_{j}})({{x}_{ik}}-{{{\bar{x}}}_{k}})} Cov(xj,xk)=sjk=n1i=1n(xijxˉj)(xikxˉk)
协方差可用于测度变量 x j {{x}_{j}} xj x k {{x}_{k}} xk的相关性,矩阵 X X X协方差矩阵为:
V = { s 1 2 s 12 ⋯ s 1 p s 21 s 2 2 ⋯ s 2 p ⋮ ⋮ ⋱ ⋮ s p 1 s p 2 ⋯ s p 2 } p × p V={{\left\{ \begin{matrix} s_{1}^{2} & {{s}_{12}} & \cdots & {{s}_{1p}} \\ {{s}_{21}} & s_{2}^{2} & \cdots & {{s}_{2p}} \\ \vdots & \vdots & \ddots & \vdots \\ {{s}_{p1}} & {{s}_{p2}} & \cdots & s_{p}^{2} \\ \end{matrix} \right\}}_{p\times p}} V=s12s21sp1s12s22sp2s1ps2psp2p×p
变量 x i {{x}_{i}} xi x j {{x}_{j}} xj相关系数:
r j k = r ( x j , x k ) = s j k s j s k = C o v ( x j , x k ) V a r ( x j ) V a r ( x k ) {{r}_{jk}}=r({{x}_{j}},{{x}_{k}})=\frac{{{s}_{jk}}}{{{s}_{j}}{{s}_{k}}}=\frac{Cov({{x}_{j}},{{x}_{k}})}{\sqrt{Var({{x}_{j}})}\sqrt{Var({{x}_{k}})}} rjk=r(xj,xk)=sjsksjk=Var(xj) Var(xk) Cov(xj,xk)

且有 0 ≤ ∣ r j k ∣ ≤ 1 0\le \left| {{r}_{jk}} \right|\le 1 0rjk1 r j k {{r}_{jk}} rjk无量纲作用,可以很好地表示2个变量间的相关程度。

注意】在计算统计量 s j 2 s_{j}^{2} sj2 s j k {{s}_{jk}} sjk时,和式前面的系数由2中取法:
当样本点集合是随机抽取得到时应当取 1 n − 1 \frac{1}{n-1} n11,这时是方差和协方差的无偏估计量
当样本点集合不是由随机抽样(如研究某一地区全部城市),则次系数取 1 n \frac{1}{n} n1(物理意义上的平均概念)。

如是总体(即估算总体方差),根号内除以n(对应excel函数:STDEVP);
如是抽样(即估算样本方差),根号内除以(n-1)(对应excel函数:STDEV);
因为我们大量接触的是样本,所以普遍使用根号内除以(n-1)。
cov ⁡ ( X , Y ) = ∑ i = 1 n ( X i − X ˉ ) ( Y i − Y ˉ ) n − 1 = ∑ i = 1 n X i Y i − 1 n ∑ i = 1 n X i ∑ k = 1 n Y k n − 1 \operatorname{cov}(X,Y)=\frac{\sum\limits_{i=1}^{n}{({{X}_{i}}-\bar{X})({{Y}_{i}}-\bar{Y})}}{n-1}\text{=}\frac{\sum\limits_{i=1}^{n}{{{X}_{i}}{{Y}_{i}}}-\frac{1}{n}\sum\limits_{i=1}^{n}{{{X}_{i}}}\sum\limits_{k=1}^{n}{{{Y}_{k}}}}{n-1} cov(X,Y)=n1i=1n(XiXˉ)(YiYˉ)=n1i=1nXiYin1i=1nXik=1nYk

ρ X Y = r ( X , Y ) = C o v ( X , Y ) V a r ( X ) V a r ( Y ) = C o v ( X , Y ) s t d ( X ) s t d ( Y )                     = ∑ i = 1 n ( X i − X ˉ ) ( Y i − Y ˉ ) ∑ i = 1 n ( X i − X ˉ ) 2 ⋅ ∑ i = 1 n ( Y i − Y ˉ ) 2 = n ∑ i = 1 n X i Y i − ∑ i = 1 n X i ⋅ ∑ i = 1 n Y i n ∑ i = 1 n X i 2 − ( ∑ i = 1 n X i ) 2 ⋅ n ∑ i = 1 n Y i 2 − ( ∑ i = 1 n Y i ) 2 \begin{aligned} & {{\rho }_{XY}}=r(X,Y)=\frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}=\frac{Cov(X,Y)}{std(X)std(Y)} \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{=}\frac{\sum\limits_{i=1}^{n}{({{X}_{i}}-\bar{X})({{Y}_{i}}-\bar{Y})}}{\sqrt{\sum\limits_{i=1}^{n}{{{({{X}_{i}}-\bar{X})}^{2}}}\centerdot \sum\limits_{i=1}^{n}{{{({{Y}_{i}}-\bar{Y})}^{2}}}}}=\frac{n\sum\limits_{i=1}^{n}{{{X}_{i}}{{Y}_{i}}}-\sum\limits_{i=1}^{n}{{{X}_{i}}}\centerdot \sum\limits_{i=1}^{n}{{{Y}_{i}}}}{\sqrt{n\sum\limits_{i=1}^{n}{X_{i}^{2}}-{{\left( \sum\limits_{i=1}^{n}{{{X}_{i}}} \right)}^{2}}}\centerdot \sqrt{n\sum\limits_{i=1}^{n}{Y_{i}^{2}}-{{\left( \sum\limits_{i=1}^{n}{{{Y}_{i}}} \right)}^{2}}}} \\ \end{aligned} ρXY=r(X,Y)=Var(X) Var(Y) Cov(X,Y)=std(X)std(Y)Cov(X,Y)                    =i=1n(XiXˉ)2i=1n(YiYˉ)2 i=1n(XiXˉ)(YiYˉ)=ni=1nXi2(i=1nXi)2 ni=1nYi2(i=1nYi)2 ni=1nXiYii=1nXii=1nYi
公式最后变成不用求均值咯【方便编程】

下面演示推到过程

ρ X Y = r ( X , Y ) = ∑ i = 1 n ( X i − X ˉ ) ( Y i − Y ˉ ) ∑ i = 1 n ( X i − X ˉ ) 2 ⋅ ∑ i = 1 n ( Y i − Y ˉ ) 2 = ∑ i = 1 n ( X i Y i − X i Y ˉ − X ˉ Y i + X ˉ Y ˉ ) ∑ i = 1 n ( X i 2 + X ˉ 2 − 2 X i X ˉ ) ⋅ ∑ i = 1 n ( Y i 2 + Y ˉ 2 − 2 Y i Y ˉ ) {{\rho }_{XY}}=r(X,Y)=\frac{\sum\limits_{i=1}^{n}{({{X}_{i}}-\bar{X})({{Y}_{i}}-\bar{Y})}}{\sqrt{\sum\limits_{i=1}^{n}{{{({{X}_{i}}-\bar{X})}^{2}}}\centerdot \sum\limits_{i=1}^{n}{{{({{Y}_{i}}-\bar{Y})}^{2}}}}}=\frac{\sum\limits_{i=1}^{n}{({{X}_{i}}{{Y}_{i}}-{{X}_{i}}\bar{Y}-\bar{X}{{Y}_{i}}+\bar{X}\bar{Y})}}{\sqrt{\sum\limits_{i=1}^{n}{(X_{i}^{2}+{{{\bar{X}}}^{2}}-2{{X}_{i}}\bar{X})}\centerdot \sum\limits_{i=1}^{n}{(Y_{i}^{2}+{{{\bar{Y}}}^{2}}-2{{Y}_{i}}\bar{Y})}}} ρXY=r(X,Y)=i=1n(XiXˉ)2i=1n(YiYˉ)2 i=1n(XiXˉ)(YiYˉ)=i=1n(Xi2+Xˉ22XiXˉ)i=1n(Yi2+Yˉ22YiYˉ) i=1n(XiYiXiYˉXˉYi+XˉYˉ)
分子(上面):
∑ i = 1 n ( X i Y i − X i Y ˉ − X ˉ Y i + X ˉ Y ˉ ) = ∑ i = 1 n ( X i Y i − 1 n X i ∑ k = 1 n Y k − 1 n Y i ∑ j = 1 n X j + 1 n 2 ∑ j = 1 n X j ∑ k = 1 n Y k ) = ∑ i = 1 n X i Y i − 1 n ∑ i = 1 n ( X i ∑ k = 1 n Y k ) − 1 n ∑ i = 1 n ( Y i ∑ j = 1 n X j ) + 1 n 2 ∑ i = 1 n ( ∑ j = 1 n X j ∑ k = 1 n Y k ) = ∑ i = 1 n X i Y i − 1 n ∑ i = 1 n X i ∑ k = 1 n Y k − 1 n ∑ j = 1 n X j ∑ i = 1 n Y i + 1 n ∑ j = 1 n X j ∑ k = 1 n Y k = ∑ i = 1 n X i Y i − 1 n ∑ i = 1 n X i ∑ k = 1 n Y k \begin{aligned} & \sum\limits_{i=1}^{n}{\left( {{X}_{i}}{{Y}_{i}}-{{X}_{i}}\bar{Y}-\bar{X}{{Y}_{i}}+\bar{X}\bar{Y} \right)}=\sum\limits_{i=1}^{n}{\left( {{X}_{i}}{{Y}_{i}}-\frac{1}{n}{{X}_{i}}\sum\limits_{k=1}^{n}{{{Y}_{k}}}-\frac{1}{n}{{Y}_{i}}\sum\limits_{j=1}^{n}{{{X}_{j}}}+ \color{red}{\frac{1}{{{n}^{2}}}\sum\limits_{j=1}^{n}{{{X}_{j}}}\sum\limits_{k=1}^{n}{{{Y}_{k}}}} \right)} \\ & =\sum\limits_{i=1}^{n}{{{X}_{i}}{{Y}_{i}}}-\frac{1}{n}\sum\limits_{i=1}^{n}{\left( {{X}_{i}}\sum\limits_{k=1}^{n}{{{Y}_{k}}} \right)}-\frac{1}{n}\sum\limits_{i=1}^{n}{\left( {{Y}_{i}}\sum\limits_{j=1}^{n}{{{X}_{j}}} \right)}+ \color{red}{\frac{1}{{{n}^{2}}}\sum\limits_{i=1}^{n}{\left( \sum\limits_{j=1}^{n}{{{X}_{j}}}\sum\limits_{k=1}^{n}{{{Y}_{k}}} \right)}} \\ & =\sum\limits_{i=1}^{n}{{{X}_{i}}{{Y}_{i}}}-\frac{1}{n}\sum\limits_{i=1}^{n}{{{X}_{i}}}\sum\limits_{k=1}^{n}{{{Y}_{k}}}-\frac{1}{n}\sum\limits_{j=1}^{n}{{{X}_{j}}}\sum\limits_{i=1}^{n}{{{Y}_{i}}}+\frac{1}{n}\sum\limits_{j=1}^{n}{{{X}_{j}}}\sum\limits_{k=1}^{n}{{{Y}_{k}}} \\ & \text{=}\sum\limits_{i=1}^{n}{{{X}_{i}}{{Y}_{i}}}-\frac{1}{n}\sum\limits_{i=1}^{n}{{{X}_{i}}}\sum\limits_{k=1}^{n}{{{Y}_{k}}} \\ \end{aligned} i=1n(XiYiXiYˉXˉYi+XˉYˉ)=i=1n(XiYin1Xik=1nYkn1Yij=1nXj+n21j=1nXjk=1nYk)=i=1nXiYin1i=1n(Xik=1nYk)n1i=1n(Yij=1nXj)+n21i=1n(j=1nXjk=1nYk)=i=1nXiYin1i=1nXik=1nYkn1j=1nXji=1nYi+n1j=1nXjk=1nYk=i=1nXiYin1i=1nXik=1nYk
分母(下面,分母不能为0):
∑ i = 1 n ( X i 2 + X ˉ 2 − 2 X i X ˉ ) ⋅ ∑ i = 1 n ( Y i 2 + Y ˉ 2 − 2 Y i Y ˉ ) = ( ∑ i = 1 n X i 2 + ∑ i = 1 n X ˉ 2 − 2 ∑ i = 1 n X i X ˉ ) ⋅ ( ∑ i = 1 n Y i 2 + ∑ i = 1 n Y ˉ 2 − 2 ∑ i = 1 n Y i Y ˉ ) = ( ∑ i = 1 n X i 2 + n X ˉ 2 − 2 X ˉ ∑ i = 1 n X i ) ⋅ ( ∑ i = 1 n Y i 2 + n Y ˉ 2 − 2 Y ˉ ∑ i = 1 n Y i ) = ( ∑ i = 1 n X i 2 + 1 n ( ∑ i = 1 n X i ) 2 − 2 n ( ∑ i = 1 n X i ) 2 ) ⋅ ( ∑ i = 1 n Y i 2 + 1 n ( ∑ i = 1 n Y i ) 2 − 2 n ( ∑ i = 1 n Y i ) 2 ) = ∑ i = 1 n X i 2 − 1 n ( ∑ i = 1 n X i ) 2 ⋅ ∑ i = 1 n Y i 2 − 1 n ( ∑ i = 1 n Y i ) 2 \begin{aligned} & \sqrt{\sum\limits_{i=1}^{n}{(X_{i}^{2}+{{{\bar{X}}}^{2}}-2{{X}_{i}}\bar{X})}\centerdot \sum\limits_{i=1}^{n}{(Y_{i}^{2}+{{{\bar{Y}}}^{2}}-2{{Y}_{i}}\bar{Y})}} \\ & \text{=}\sqrt{\left( \sum\limits_{i=1}^{n}{X_{i}^{2}}+\sum\limits_{i=1}^{n}{{{{\bar{X}}}^{2}}}-2\sum\limits_{i=1}^{n}{{{X}_{i}}\bar{X}} \right)\centerdot \left( \sum\limits_{i=1}^{n}{Y_{i}^{2}}+\sum\limits_{i=1}^{n}{{{{\bar{Y}}}^{2}}}-2\sum\limits_{i=1}^{n}{{{Y}_{i}}\bar{Y}} \right)} \\ & \text{=}\sqrt{\left( \sum\limits_{i=1}^{n}{X_{i}^{2}}+n{{{\bar{X}}}^{2}}-2\bar{X}\sum\limits_{i=1}^{n}{{{X}_{i}}} \right)\centerdot \left( \sum\limits_{i=1}^{n}{Y_{i}^{2}}+n{{{\bar{Y}}}^{2}}-2\bar{Y}\sum\limits_{i=1}^{n}{{{Y}_{i}}} \right)} \\ & =\sqrt{\left( \sum\limits_{i=1}^{n}{X_{i}^{2}}+\frac{1}{n}{{\left( \sum\limits_{i=1}^{n}{{{X}_{i}}} \right)}^{2}}-\frac{2}{n}{{\left( \sum\limits_{i=1}^{n}{{{X}_{i}}} \right)}^{2}} \right)\centerdot \left( \sum\limits_{i=1}^{n}{Y_{i}^{2}}+\frac{1}{n}{{\left( \sum\limits_{i=1}^{n}{{{Y}_{i}}} \right)}^{2}}-\frac{2}{n}{{\left( \sum\limits_{i=1}^{n}{{{Y}_{i}}} \right)}^{2}} \right)} \\ & =\sqrt{\sum\limits_{i=1}^{n}{X_{i}^{2}}-\frac{1}{n}{{\left( \sum\limits_{i=1}^{n}{{{X}_{i}}} \right)}^{2}}}\centerdot \sqrt{\sum\limits_{i=1}^{n}{Y_{i}^{2}}-\frac{1}{n}{{\left( \sum\limits_{i=1}^{n}{{{Y}_{i}}} \right)}^{2}}} \\ \end{aligned} i=1n(Xi2+Xˉ22XiXˉ)i=1n(Yi2+Yˉ22YiYˉ) =(i=1nXi2+i=1nXˉ22i=1nXiXˉ)(i=1nYi2+i=1nYˉ22i=1nYiYˉ) =(i=1nXi2+nXˉ22Xˉi=1nXi)(i=1nYi2+nYˉ22Yˉi=1nYi) =i=1nXi2+n1(i=1nXi)2n2(i=1nXi)2i=1nYi2+n1(i=1nYi)2n2(i=1nYi)2 =i=1nXi2n1(i=1nXi)2 i=1nYi2n1(i=1nYi)2

1.2 数据标准化

①数据中心化(平移变换)
x i j ∗ = x i j − x ˉ j     ( i = 1 , 2 , ⋯   , n ; j = 1 , 2 , ⋯   , p ) x_{ij}^{*}={{x}_{ij}}-{{\bar{x}}_{j}}\ \ \ (i=1,2,\cdots ,n;j=1,2,\cdots ,p) xij=xijxˉj   (i=1,2,,n;j=1,2,,p)
该变化可以使新坐标的原点与样本点集合的重心重合,而这样的变换既不会改变样本点间的相互位置,也不会改变变量间的相关性,但变换后,却常常有许多技术上的便利。
变量 x j {{x}_{j}} xj均值(一列的均值) x ˉ j = 1 n ∑ i = 1 n x i j = 0 {{\bar{x}}_{j}}=\frac{1}{n}\sum\limits_{i=1}^{n}{{{x}_{ij}}}=0 xˉj=n1i=1nxij=0
变量 x j {{x}_{j}} xj方差 s j 2 = V a r ( x j ) = 1 n ∑ i = 1 n ( x i j − x ˉ j ) 2 = 1 n ∑ i = 1 n x i j 2 = 1 n x j T x j = 1 n ∥ x j ∥ 2 s_{j}^{2}=Var({{x}_{j}})=\frac{1}{n}\sum\limits_{i=1}^{n}{{{({{x}_{ij}}-{{{\bar{x}}}_{j}})}^{2}}}=\frac{1}{n}\sum\limits_{i=1}^{n}{x_{ij}^{2}}=\frac{1}{n}x_{j}^{T}{{x}_{j}}=\frac{1}{n}{{\left\| {{x}_{j}} \right\|}^{2}} sj2=Var(xj)=n1i=1n(xijxˉj)2=n1i=1nxij2=n1xjTxj=n1xj2
s j k = C o v ( x j , x k ) = 1 n ∑ i = 1 n ( x i j − x ˉ j ) ( x i k − x ˉ k ) = 1 n ∑ i = 1 n x i j x i k = 1 n < x j , x k > = 1 n x j T x k {{s}_{jk}}=Cov({{x}_{j}},{{x}_{k}})=\frac{1}{n}\sum\limits_{i=1}^{n}{({{x}_{ij}}-{{{\bar{x}}}_{j}})({{x}_{ik}}-{{{\bar{x}}}_{k}})}=\frac{1}{n}\sum\limits_{i=1}^{n}{{{x}_{ij}}{{x}_{ik}}}=\frac{1}{n}<{{x}_{j}},{{x}_{k}}>=\frac{1}{n}x_{j}^{T}{{x}_{k}} sjk=Cov(xj,xk)=n1i=1n(xijxˉj)(xikxˉk)=n1i=1nxijxik=n1<xj,xk>=n1xjTxk
r j k = r ( x j , x k ) = s j k s j s k = C o v ( x j , x k ) V a r ( x j ) V a r ( x k ) = 1 n < x j , x k > 1 n ∥ x j ∥ ⋅ 1 n ∥ x k ∥ = < x j , x k > ∥ x j ∥ ⋅ ∥ x k ∥ {{r}_{jk}}=r({{x}_{j}},{{x}_{k}})=\frac{{{s}_{jk}}}{{{s}_{j}}{{s}_{k}}}=\frac{Cov({{x}_{j}},{{x}_{k}})}{\sqrt{Var({{x}_{j}})}\sqrt{Var({{x}_{k}})}}=\frac{\frac{1}{n}<{{x}_{j}},{{x}_{k}}>}{\frac{1}{\sqrt{n}}\left\| {{x}_{j}} \right\|\cdot \frac{1}{\sqrt{n}}\left\| {{x}_{k}} \right\|}=\frac{<{{x}_{j}},{{x}_{k}}>}{\left\| {{x}_{j}} \right\|\cdot \left\| {{x}_{k}} \right\|} rjk=r(xj,xk)=sjsksjk=Var(xj) Var(xk) Cov(xj,xk)=n 1xjn 1xkn1<xj,xk>=xjxk<xj,xk>
这时,2个变量的相关系数恰好等于它们的余弦值。当 r j k = 0 {{r}_{jk}}=0 rjk=0 cos ⁡ θ j k = 0 \cos {{\theta }_{jk}}=0 cosθjk=0
θ j k = 90 ∘ ; 当 r j k = 1 , cos ⁡ θ j k = 1 ⇒ θ j k = 0 ∘ {{\theta }_{jk}}={{90}^{\circ }};当{{r}_{jk}}=1,\cos {{\theta }_{jk}}=1\Rightarrow {{\theta }_{jk}}={{0}^{\circ }} θjk=90rjk=1cosθjk=1θjk=0
②数据压缩化(无量纲化)
如果各变量的测量单位一致,可以采用欧氏距离测定样本空间中点 x i {{x}_{i}} xi和点 x j {{x}_{j}} xj之间的距离有: d ( e j , e k ) = ∥ e j − e k ∥ 2 = ∑ i = 1 p ( x i j − x i k ) 2 d({{e}_{j}},{{e}_{k}})={{\left\| {{e}_{j}}-{{e}_{k}} \right\|}^{2}}=\sum\limits_{i=1}^{p}{{{({{x}_{ij}}-{{x}_{ik}})}^{2}}} d(ej,ek)=ejek2=i=1p(xijxik)2,然后实际问题中,不同变量测量单位不一致,于是采用压缩化,消去每个变量的方差均让他变成1即:
x i j ∗ = x i j s j    ( i = 1 , 2 , ⋯   , n ; j = 1 , 2 , ⋯   , p ) x_{ij}^{*}=\frac{{{x}_{ij}}}{{{s}_{j}}}\ \ (i=1,2,\cdots ,n;j=1,2,\cdots ,p) xij=sjxij  (i=1,2,,n;j=1,2,,p)
还有其他消去量纲的方法:
x i j ∗ = x i j max ⁡ i   { x i j } , x i j ∗ = x i j min ⁡ i   { x i j } , x i j ∗ = x i j x ˉ j , x i j ∗ = x i j R    ( R = max ⁡ i   { x i j } − min ⁡ i   { x i j } ) x_{ij}^{*}=\frac{{{x}_{ij}}}{\underset{i}{\mathop{\max }}\,\{{{x}_{ij}}\}},x_{ij}^{*}=\frac{{{x}_{ij}}}{\underset{i}{\mathop{\min }}\,\{{{x}_{ij}}\}},x_{ij}^{*}=\frac{{{x}_{ij}}}{{{{\bar{x}}}_{j}}},x_{ij}^{*}=\frac{{{x}_{ij}}}{R}\ \ (R=\underset{i}{\mathop{\max }}\,\{{{x}_{ij}}\}-\underset{i}{\mathop{\min }}\,\{{{x}_{ij}}\}) xij=imax{xij}xij,xij=imin{xij}xij,xij=xˉjxij,xij=Rxij  (R=imax{xij}imin{xij})
③数据中心化+压缩化=标准化
x i j ∗ = x i j − x ˉ j s j     ( i = 1 , 2 , ⋯   , n ; j = 1 , 2 , ⋯   , p ) x_{ij}^{*}=\frac{{{x}_{ij}}-{{{\bar{x}}}_{j}}}{{{s}_{j}}}\ \ \ (i=1,2,\cdots ,n;j=1,2,\cdots ,p) xij=sjxijxˉj   (i=1,2,,n;j=1,2,,p)

记新样本矩 X ∗ = ( x i j ∗ ) n × p = ( x 1 ∗ , x 2 ∗ , ⋯   , x p ∗ ) {{X}^{*}}={{(x_{ij}^{*})}_{n\times p}}=(x_{1}^{*},x_{2}^{*},\cdots ,x_{p}^{*}) X=(xij)n×p=(x1,x2,,xp)【这里 s j {{s}_{j}} sj为标准差,不是方差】
变量 x j ∗ x_{j}^{*} xj均值(一列的均值)
x ˉ j ∗ = 1 n ∑ i = 1 n x i j ∗ = 1 n ∑ i = 1 n x i j − x ˉ j s j = 1 n × s j ∑ i = 1 n ( x i j − x ˉ j ) = 0 \bar{x}_{j}^{*}=\frac{1}{n}\sum\limits_{i=1}^{n}{x_{ij}^{*}}=\frac{1}{n}\sum\limits_{i=1}^{n}{\frac{{{x}_{ij}}-{{{\bar{x}}}_{j}}}{{{s}_{j}}}}=\frac{1}{n\times {{s}_{j}}}\sum\limits_{i=1}^{n}{({{x}_{ij}}-{{{\bar{x}}}_{j}})}=0 xˉj=n1i=1nxij=n1i=1nsjxijxˉj=n×sj1i=1n(xijxˉj)=0
变量 x j ∗ x_{j}^{*} xj的方差
V a r ( x j ∗ ) = 1 n ∑ i = 1 n ( x i j ∗ − x ˉ j ∗ ) 2 = 1 n ∑ i = 1 n ( x i j ∗ ) 2 = 1 n ( x j ∗ ) T ⋅ x j ∗ = 1 n ∥ x j ∗ ∥ 2             = 1 n ∑ i = 1 n ( x i j − x ˉ j s j ) 2 = 1 s j 2 × 1 n ∑ i = 1 n ( x i j − x ˉ j ) 2   = s j 2 s j 2 = 1 \begin{aligned} & Var(x_{j}^{*})=\frac{1}{n}\sum\limits_{i=1}^{n}{{{(x_{ij}^{*}-\bar{x}_{j}^{*})}^{2}}}=\frac{1}{n}\sum\limits_{i=1}^{n}{{{(x_{ij}^{*})}^{2}}}=\frac{1}{n}{{(x_{j}^{*})}^{T}}\cdot x_{j}^{*}=\frac{1}{n}{{\left\| x_{j}^{*} \right\|}^{2}} \\ & \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{n}\sum\limits_{i=1}^{n}{{{(\frac{{{x}_{ij}}-{{{\bar{x}}}_{j}}}{{{s}_{j}}})}^{2}}}=\frac{1}{s_{j}^{2}}\times \frac{1}{n}\sum\limits_{i=1}^{n}{{{({{x}_{ij}}-{{{\bar{x}}}_{j}})}^{2}}}\ =\frac{s_{j}^{2}}{s_{j}^{2}}=1 \\ \end{aligned} Var(xj)=n1i=1n(xijxˉj)2=n1i=1n(xij)2=n1(xj)Txj=n1xj2           =n1i=1n(sjxijxˉj)2=sj21×n1i=1n(xijxˉj)2 =sj2sj2=1
新的所有变量方差为1
C o v ( x j ∗ , x k ∗ ) = s j k = 1 n ∑ i = 1 n ( x i j ∗ − x ˉ j ∗ ) ( x i k ∗ − x ˉ k ∗ ) = 1 n ∑ i = 1 n x i j ∗ x i k ∗ = 1 n < x j ∗ , x k ∗ > = 1 n ( x j ∗ ) T x k ∗ Cov(x_{_{j}}^{*},x_{_{k}}^{*})={{s}_{jk}}=\frac{1}{n}\sum\limits_{i=1}^{n}{(x_{_{ij}}^{*}-\bar{x}_{_{j}}^{*})(x_{_{ik}}^{*}-\bar{x}_{_{k}}^{*})}=\frac{1}{n}\sum\limits_{i=1}^{n}{x_{_{ij}}^{*}x_{_{ik}}^{*}}=\frac{1}{n}<x_{_{j}}^{*},x_{_{k}}^{*}>=\frac{1}{n}{{(x_{j}^{*})}^{T}}x_{_{k}}^{*} Cov(xj,xk)=sjk=n1i=1n(xijxˉj)(xikxˉk)=n1i=1nxijxik=n1<xj,xk>=n1(xj)Txk
r j k = r ( x j ∗ , x k ∗ ) = s j k ∗ s j ∗ s k ∗ = C o v ( x j ∗ , x k ∗ ) V a r ( x j ∗ ) V a r ( x j ∗ ) = 1 n < x j ∗ , x k ∗ > 1 ⋅ 1 = C o v ( x j ∗ , x k ∗ ) {{r}_{jk}}=r(x_{_{j}}^{*},x_{_{k}}^{*})=\frac{s_{_{jk}}^{*}}{s_{_{j}}^{*}s_{_{k}}^{*}}=\frac{Cov(x_{_{j}}^{*},x_{_{k}}^{*})}{\sqrt{Var(x_{_{j}}^{*})}\sqrt{Var(x_{_{j}}^{*})}}=\frac{\frac{1}{n}<x_{_{j}}^{*},x_{_{k}}^{*}>}{1\cdot 1}=Cov(x_{_{j}}^{*},x_{_{k}}^{*}) rjk=r(xj,xk)=sjsksjk=Var(xj) Var(xj) Cov(xj,xk)=11n1<xj,xk>=Cov(xj,xk)
r j k ∗ = r ( x j ∗ , x k ∗ ) = s j k ∗ s j ∗ s k ∗ = C o v ( x j ∗ , x k ∗ ) V a r ( x j ∗ ) V a r ( x j ∗ ) = 1 n < x j ∗ , x k ∗ > 1 ⋅ 1      = C o v ( x j ∗ , x k ∗ )      = 1 n ∑ i = 1 n ( x i j ∗ − x ˉ j ∗ ) ( x i k ∗ − x ˉ k ∗ ) = 1 n ∑ i = 1 n x i j ∗ x i k ∗      = 1 n ∑ i = 1 n ( x i j − x ˉ j s j ) ( x i k − x ˉ k s k ) = 1 n ∑ i = 1 n ( x i j − x ˉ j ) ( x i k − x ˉ k ) s j s k      = C o v ( x j , x k ) s j s k = r ( x j , x k ) = r j k \begin{aligned} & r_{_{jk}}^{*}=r(x_{_{j}}^{*},x_{_{k}}^{*})=\frac{s_{_{jk}}^{*}}{s_{_{j}}^{*}s_{_{k}}^{*}}=\frac{Cov(x_{_{j}}^{*},x_{_{k}}^{*})}{\sqrt{Var(x_{_{j}}^{*})}\sqrt{Var(x_{_{j}}^{*})}}=\frac{\frac{1}{n}<x_{_{j}}^{*},x_{_{k}}^{*}>}{1\cdot 1} \\ & \ \ \ \ =Cov(x_{_{j}}^{*},x_{_{k}}^{*}) \\ & \ \ \ \ =\frac{1}{n}\sum\limits_{i=1}^{n}{(x_{_{ij}}^{*}-\bar{x}_{_{j}}^{*})(x_{_{ik}}^{*}-\bar{x}_{_{k}}^{*})}=\frac{1}{n}\sum\limits_{i=1}^{n}{x_{_{ij}}^{*}x_{_{ik}}^{*}} \\ & \ \ \ \ =\frac{1}{n}\sum\limits_{i=1}^{n}{(\frac{{{x}_{ij}}-{{{\bar{x}}}_{j}}}{{{s}_{j}}})(\frac{{{x}_{ik}}-{{{\bar{x}}}_{k}}}{{{s}_{k}}})=\frac{1}{n}\sum\limits_{i=1}^{n}{\frac{({{x}_{ij}}-{{{\bar{x}}}_{j}})({{x}_{ik}}-{{{\bar{x}}}_{k}})}{{{s}_{j}}{{s}_{k}}}}} \\ & \ \ \ \ =\frac{Cov({{x}_{j}},{{x}_{k}})}{{{s}_{j}}{{s}_{k}}}=r({{x}_{j}},{{x}_{k}})={{r}_{jk}} \\ \end{aligned} rjk=r(xj,xk)=sjsksjk=Var(xj) Var(xj) Cov(xj,xk)=11n1<xj,xk>    =Cov(xj,xk)    =n1i=1n(xijxˉj)(xikxˉk)=n1i=1nxijxik    =n1i=1n(sjxijxˉj)(skxikxˉk)=n1i=1nsjsk(xijxˉj)(xikxˉk)    =sjskCov(xj,xk)=r(xj,xk)=rjk
综上,有
s j k = C o v ( x j ∗ , x k ∗ ) = r j k ∗ = r ( x j ∗ , x k ∗ ) = r ( x j , x k ) = r j k {{s}_{jk}}=Cov(x_{_{j}}^{*},x_{_{k}}^{*})=r_{_{jk}}^{*}=r(x_{_{j}}^{*},x_{_{k}}^{*})=r({{x}_{j}},{{x}_{k}})={{r}_{jk}} sjk=Cov(xj,xk)=rjk=r(xj,xk)=r(xj,xk)=rjk
j = k j=k j=k时,上式协方差就等价于方差=1,于是上式均为1。
④反标准化(反归一化)
我们假设将样本数据 Z = ( X , Y ) Z=(X,Y) Z=(X,Y)经过标准化后通过偏最小二乘法得到了回归方程,并且为了推导方便,我们假设我们只有2个因变量,16个自变量:
【** 下面是标准差,不是方差**】
{ y 1 ∗ = X * B 1 = b 11 x 1 ∗ + b 12 x 2 ∗ + ⋯ + b 1 p x p ∗ y 2 ∗ = X * B 2 = b 21 x 1 ∗ + b 22 x 2 ∗ + ⋯ + b 2 p x p ∗ \left\{ \begin{aligned} & y_{1}^{*}={{X}^{\text{*}}}{{B}_{1}}={{b}_{11}}x_{1}^{*}+{{b}_{12}}x_{2}^{*}+\cdots +{{b}_{1p}}x_{p}^{*} \\ & y_{2}^{*}={{X}^{\text{*}}}{{B}_{2}}={{b}_{21}}x_{1}^{*}+{{b}_{22}}x_{2}^{*}+\cdots +{{b}_{2p}}x_{p}^{*} \\ \end{aligned} \right. {y1=X*B1=b11x1+b12x2++b1pxpy2=X*B2=b21x1+b22x2++b2pxp
y 1 ∗ y_{1}^{*} y1 x 1 ∗ x_{1}^{*} x1等都是经过数据标准化的,则我们有:
y 1 ∗ = y − y ˉ 1 std ⁡ ( y 1 ) x 1 ∗ = x − x ˉ 1 std ⁡ ( x 1 ) y_{1}^{*}=\frac{y-{{{\bar{y}}}_{1}}}{\operatorname{std}({{y}_{1}})} \\ x_{1}^{*}=\frac{x-{{{\bar{x}}}_{1}}}{\operatorname{std}({{x}_{1}})} y1=std(y1)yyˉ1x1=std(x1)xxˉ1
我们入上式则有:
{ y 1 − y ˉ 1 std ⁡ ( y 1 ) = b 11 x 1 − x ˉ 1 std ⁡ ( x 1 ) + b 12 x 2 − x ˉ 2 std ⁡ ( x 2 ) + ⋯ + b 1 p x − x ˉ p std ⁡ ( x p ) y 2 − y ˉ 2 std ⁡ ( y 2 ) = b 21 x 1 − x ˉ 1 std ⁡ ( x 1 ) + b 22 x 2 − x ˉ 2 std ⁡ ( x 2 ) + ⋯ + b 2 p x − x ˉ p std ⁡ ( x p ) \left\{ \begin{aligned} & \frac{{{y}_{1}}-{{{\bar{y}}}_{1}}}{\operatorname{std}({{y}_{1}})}={{b}_{11}}\frac{{{x}_{1}}-{{{\bar{x}}}_{1}}}{\operatorname{std}({{x}_{1}})}+{{b}_{12}}\frac{{{x}_{2}}-{{{\bar{x}}}_{2}}}{\operatorname{std}({{x}_{2}})}+\cdots +{{b}_{1p}}\frac{x-{{{\bar{x}}}_{p}}}{\operatorname{std}({{x}_{p}})} \\ & \frac{{{y}_{2}}-{{{\bar{y}}}_{2}}}{\operatorname{std}({{y}_{2}})}={{b}_{21}}\frac{{{x}_{1}}-{{{\bar{x}}}_{1}}}{\operatorname{std}({{x}_{1}})}+{{b}_{22}}\frac{{{x}_{2}}-{{{\bar{x}}}_{2}}}{\operatorname{std}({{x}_{2}})}+\cdots +{{b}_{2p}}\frac{x-{{{\bar{x}}}_{p}}}{\operatorname{std}({{x}_{p}})} \\ \end{aligned} \right. std(y1)y1yˉ1=b11std(x1)x1xˉ1+b12std(x2)x2xˉ2++b1pstd(xp)xxˉpstd(y2)y2yˉ2=b21std(x1)x1xˉ1+b22std(x2)x2xˉ2++b2pstd(xp)xxˉp
将上式左右两边进行拓展,可得到原始数据的回归方程:
{ y 1 = b 11 std ⁡ ( y 1 ) std ⁡ ( x 1 ) x 1 + b 12 std ⁡ ( y 1 ) std ⁡ ( x 2 ) x 2 + ⋯ + b 1 p std ⁡ ( y 1 ) std ⁡ ( x p ) x p + y ˉ 1 − std ⁡ ( y 1 ) ( b 11 x ˉ 1 std ⁡ ( x 1 ) + b 12 x ˉ 2 std ⁡ ( x 2 ) + ⋯ + b 1 p x ˉ p std ⁡ ( x p ) ) y 2 = b 21 std ⁡ ( y 2 ) std ⁡ ( x 1 ) x 1 + b 22 std ⁡ ( y 2 ) std ⁡ ( x 2 ) x 2 + ⋯ + b 2 p std ⁡ ( y 2 ) std ⁡ ( x p ) x p + y ˉ 2 − std ⁡ ( y 2 ) ( b 21 x ˉ 1 std ⁡ ( x 1 ) + b 22 x ˉ 2 std ⁡ ( x 2 ) + ⋯ + b 2 p x ˉ p std ⁡ ( x p ) ) \left\{ \begin{aligned} & {{y}_{1}}=\frac{{{b}_{11}}\operatorname{std}({{y}_{1}})}{\operatorname{std}({{x}_{1}})}{{x}_{1}}+\frac{{{b}_{12}}\operatorname{std}({{y}_{1}})}{\operatorname{std}({{x}_{2}})}{{x}_{2}}+\cdots +\frac{{{b}_{1p}}\operatorname{std}({{y}_{1}})}{\operatorname{std}({{x}_{p}})}{{x}_{p}}+{{{\bar{y}}}_{1}}-\operatorname{std}({{y}_{1}})\left( \frac{{{b}_{11}}{{{\bar{x}}}_{1}}}{\operatorname{std}({{x}_{1}})}+\frac{{{b}_{12}}{{{\bar{x}}}_{2}}}{\operatorname{std}({{x}_{2}})}+\cdots +\frac{{{b}_{1p}}{{{\bar{x}}}_{p}}}{\operatorname{std}({{x}_{p}})} \right) \\ & {{y}_{2}}=\frac{{{b}_{21}}\operatorname{std}({{y}_{2}})}{\operatorname{std}({{x}_{1}})}{{x}_{1}}+\frac{{{b}_{22}}\operatorname{std}({{y}_{2}})}{\operatorname{std}({{x}_{2}})}{{x}_{2}}+\cdots +\frac{{{b}_{2p}}\operatorname{std}({{y}_{2}})}{\operatorname{std}({{x}_{p}})}{{x}_{p}}+{{{\bar{y}}}_{2}}-\operatorname{std}({{y}_{2}})\left( \frac{{{b}_{21}}{{{\bar{x}}}_{1}}}{\operatorname{std}({{x}_{1}})}+\frac{{{b}_{22}}{{{\bar{x}}}_{2}}}{\operatorname{std}({{x}_{2}})}+\cdots +\frac{{{b}_{2p}}{{{\bar{x}}}_{p}}}{\operatorname{std}({{x}_{p}})} \right) \\ \end{aligned} \right. y1=std(x1)b11std(y1)x1+std(x2)b12std(y1)x2++std(xp)b1pstd(y1)xp+yˉ1std(y1)(std(x1)b11xˉ1+std(x2)b12xˉ2++std(xp)b1pxˉp)y2=std(x1)b21std(y2)x1+std(x2)b22std(y2)x2++std(xp)b2pstd(y2)xp+yˉ2std(y2)(std(x1)b21xˉ1+std(x2)b22xˉ2++std(xp)b2pxˉp)
等价于
{ y 1 = std ⁡ ( y 1 ) ( b 11 / std ⁡ ( x 1 )    b 12 / std ⁡ ( x 2 )    ⋮ b 1 p / std ⁡ ( x p )    ) ( x 1 x 2 ⋯ x p ) + y ˉ 1 − std ⁡ ( y 1 ) ( b 11 x ˉ 1 std ⁡ ( x 1 ) + b 12 x ˉ 2 std ⁡ ( x 2 ) + ⋯ + b 1 p x ˉ p std ⁡ ( x p ) ) y 2 = std ⁡ ( y 2 ) ( b 21 / std ⁡ ( x 1 )    b 22 / std ⁡ ( x 2 )    ⋮ b 2 p / std ⁡ ( x p )    ) ( x 1 x 2 ⋯ x p ) + y ˉ 2 − std ⁡ ( y 2 ) ( b 21 x ˉ 1 std ⁡ ( x 1 ) + b 22 x ˉ 2 std ⁡ ( x 2 ) + ⋯ + b 2 p x ˉ p std ⁡ ( x p ) ) \left\{ \begin{aligned} & {{y}_{1}}=\operatorname{std}({{y}_{1}})\left( \begin{matrix} {{{b}_{11}}}/{\operatorname{std}({{x}_{1}})}\; \\ {{{b}_{12}}}/{\operatorname{std}({{x}_{2}})}\; \\ \vdots \\ {{{b}_{1p}}}/{\operatorname{std}({{x}_{p}})}\; \\ \end{matrix} \right)\left( \begin{matrix} {{x}_{1}} & {{x}_{2}} & \cdots & {{x}_{p}} \\ \end{matrix} \right)+{{{\bar{y}}}_{1}}-\operatorname{std}({{y}_{1}})\left( \frac{{{b}_{11}}{{{\bar{x}}}_{1}}}{\operatorname{std}({{x}_{1}})}+\frac{{{b}_{12}}{{{\bar{x}}}_{2}}}{\operatorname{std}({{x}_{2}})}+\cdots +\frac{{{b}_{1p}}{{{\bar{x}}}_{p}}}{\operatorname{std}({{x}_{p}})} \right) \\ & {{y}_{2}}=\operatorname{std}({{y}_{2}})\left( \begin{matrix} {{{b}_{21}}}/{\operatorname{std}({{x}_{1}})}\; \\ {{{b}_{22}}}/{\operatorname{std}({{x}_{2}})}\; \\ \vdots \\ {{{b}_{2p}}}/{\operatorname{std}({{x}_{p}})}\; \\ \end{matrix} \right)\left( \begin{matrix} {{x}_{1}} & {{x}_{2}} & \cdots & {{x}_{p}} \\ \end{matrix} \right)+{{{\bar{y}}}_{2}}-\operatorname{std}({{y}_{2}})\left( \frac{{{b}_{21}}{{{\bar{x}}}_{1}}}{\operatorname{std}({{x}_{1}})}+\frac{{{b}_{22}}{{{\bar{x}}}_{2}}}{\operatorname{std}({{x}_{2}})}+\cdots +\frac{{{b}_{2p}}{{{\bar{x}}}_{p}}}{\operatorname{std}({{x}_{p}})} \right) \\ \end{aligned} \right. y1=std(y1)b11/std(x1)b12/std(x2)b1p/std(xp)(x1x2xp)+yˉ1std(y1)(std(x1)b11xˉ1+std(x2)b12xˉ2++std(xp)b1pxˉp)y2=std(y2)b21/std(x1)b22/std(x2)b2p/std(xp)(x1x2xp)+yˉ2std(y2)(std(x1)b21xˉ1+std(x2)b22xˉ2++std(xp)b2pxˉp)
这样我们就知道怎么求现在的系数了。
其中截距为
{ b 1 = y ˉ 1 − std ⁡ ( y 1 ) ( x ˉ 1 std ⁡ ( x 1 ) b 11 + x ˉ 2 std ⁡ ( x 2 ) b 12 + ⋯ + x ˉ p std ⁡ ( x p ) b 1 p ) b 2 = y ˉ 2 − std ⁡ ( y 2 ) ( x ˉ 1 std ⁡ ( x 1 ) b 21 + x ˉ 2 std ⁡ ( x 2 ) b 22 + ⋯ + x ˉ p std ⁡ ( x p ) b 2 p ) \left\{ \begin{aligned} & {{b}_{1}}={{{\bar{y}}}_{1}}-\operatorname{std}({{y}_{1}})\left( \frac{{{{\bar{x}}}_{1}}}{\operatorname{std}({{x}_{1}})}{{b}_{11}}+\frac{{{{\bar{x}}}_{2}}}{\operatorname{std}({{x}_{2}})}{{b}_{12}}+\cdots +\frac{{{{\bar{x}}}_{p}}}{\operatorname{std}({{x}_{p}})}{{b}_{1p}} \right) \\ & {{b}_{2}}={{{\bar{y}}}_{2}}-\operatorname{std}({{y}_{2}})\left( \frac{{{{\bar{x}}}_{1}}}{\operatorname{std}({{x}_{1}})}{{b}_{21}}+\frac{{{{\bar{x}}}_{2}}}{\operatorname{std}({{x}_{2}})}{{b}_{22}}+\cdots +\frac{{{{\bar{x}}}_{p}}}{\operatorname{std}({{x}_{p}})}{{b}_{2p}} \right) \\ \end{aligned} \right. b1=yˉ1std(y1)(std(x1)xˉ1b11+std(x2)xˉ2b12++std(xp)xˉpb1p)b2=yˉ2std(y2)(std(x1)xˉ1b21+std(x2)xˉ2b22++std(xp)xˉpb2p)等价于

{ b 1 = y ˉ 1 − std ⁡ ( y 1 ) ( x ˉ 1 std ⁡ ( x 1 )   x ˉ 2 std ⁡ ( x 2 )   ⋯   x ˉ p std ⁡ ( x p ) ) ( b 11 b 12 ⋮ b 1 p ) b 2 = y ˉ 2 − std ⁡ ( y 2 ) ( x ˉ 1 std ⁡ ( x 1 )   x ˉ 2 std ⁡ ( x 2 )   ⋯   x ˉ p std ⁡ ( x p ) ) ( b 21 b 22 ⋮ b 2 p ) \left\{ \begin{aligned} & {{b}_{1}}={{{\bar{y}}}_{1}}-\operatorname{std}({{y}_{1}})\left( \frac{{{{\bar{x}}}_{1}}}{\operatorname{std}({{x}_{1}})}\ \frac{{{{\bar{x}}}_{2}}}{\operatorname{std}({{x}_{2}})}\ \cdots \ \frac{{{{\bar{x}}}_{p}}}{\operatorname{std}({{x}_{p}})} \right)\left( \begin{matrix} {{b}_{11}} \\ {{b}_{12}} \\ \vdots \\ {{b}_{1p}} \\ \end{matrix} \right) \\ & {{b}_{2}}={{{\bar{y}}}_{2}}-\operatorname{std}({{y}_{2}})\left( \frac{{{{\bar{x}}}_{1}}}{\operatorname{std}({{x}_{1}})}\ \frac{{{{\bar{x}}}_{2}}}{\operatorname{std}({{x}_{2}})}\ \cdots \ \frac{{{{\bar{x}}}_{p}}}{\operatorname{std}({{x}_{p}})} \right)\left( \begin{matrix} {{b}_{21}} \\ {{b}_{22}} \\ \vdots \\ {{b}_{2p}} \\ \end{matrix} \right) \\ \end{aligned} \right. b1=yˉ1std(y1)(std(x1)xˉ1 std(x2)xˉ2  std(xp)xˉp)b11b12b1pb2=yˉ2std(y2)(std(x1)xˉ1 std(x2)xˉ2  std(xp)xˉp)b21b22b2p

Reference

王惠文.偏最小二乘方法原理及其应用
郭建校. 改进的高维非线性PLS回归方法及应用研究[D]. 天津大学, 2010.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值