研究YOLO有些日子,有两个硬伤:
一、训练需要太多图片。手动去搞有些傻,人脸识别是如何一张照片就可以运作的?
二、YOLO在树莓上运行,最多三四帧,而且大大牺牲了识别的精度。
刷视频时看到跟踪速度非常快,又是简单硬件实现的案例:
得到线索上Twwiter上继续扒。相对于YOLOv5的追踪效果,好了太多倍。说明在识别物体后,追踪不能再用YOLO,效率太低。
https://x.com/YaBoyFathoM/status/1725382399771414986?s=20
在下方回复里,作者贴出来了其将项目放到了Github地址如下:rizkydermawan1992 (Rizky Dermawan) · GitHub
网友回复摘录:
一、The real challenge of course is using a background where you don't stand out easily. Urban, or night, or other kinds of background diffusion. Also, distance to target. Following something that's 1 - 2 pixels.
二、Much better demo: put a laser pointer on it. Bonus points: ensure it avoids all eyeballs.作者回复:True. Actuators are cringe and the display accuracy definitely doesn't match the capability of that gimbal device thingy.
This won't stay true for long. Birds can fly through dense bushes at 20mph. hardware and software integration is unfathomably effective in the limit.
作者代码复现:人脸识别、人脸追踪
作者的代码清晰放在Github上。下载下来,安装好对应的依赖,不需要改动任何东西运行即可复现,难度很小。我这里用的是笔记本电脑+外置摄像头。
仅在安装dediaipe时有小插曲,也很容易搜索原因修复,如下。
#出错:ERROR: Could not install packages due to an OSError: [WinError 5] 拒绝访问。: #'C:\\ProgramData\\Anaconda3\\envs\\laser_mosquito\\Lib\\site-packages\\cv2\\cv2.pyd'
pip install mediapipe -i https://pypi.tuna.tsinghua.edu.cn/simple/
#修改(加入--user)后运行正确
pip install --user mediapipe -i https://pypi.tuna.tsinghua.edu.cn/simple/
一、facedetection.py
二、facetracking.py
先需要稍稍把代码里涉及到硬件com口和伺服电机控制的的16~19行,22行,32~46行,64~68行注释掉,然后在运行。就可以实现原作者视频里的tracking效果了。真人人脸和照片都能识别。
facedetection vs facetracking两者对比:
facedetection.py | facetracking.py | |
识别速度 | 极快 | 极快 |
识别距离 | 3m及以上 | 1.5m以内 |
识别框 | 矩形绿色框 | 红色瞄准星 |
识别范围 | 真实人脸 | 真实人脸&手机人脸图片 |
其他 | 可同时识别两个以上人脸 | 有locked,对目标人脸进行锁定 |