工具、笔记类
文章平均质量分 86
主要讲环境搭建、课程笔记等
小哥伯涵
这个作者很懒,什么都没留下…
展开
-
Git / GitKraken 安装及使用
GitKraken 图形界面软件,方便版本对比、更新版本、多人协作等。完全可视化的提升生产力工具。从此电脑不再n多版本,n个命名,找不到版本之间的区别了。原创 2023-05-24 16:54:15 · 1328 阅读 · 0 评论 -
Python分析过程变量方法/Debug使用方法
例如你想引用一个新的开源库,运行库的example后,利用该功能很容易从大量的变量名中找到我们需要。一样,在程序运行完成后,查看每个变量并继续对变量进行操作的方法,即勾选。方法三:Pycharm——不同于Jupyter只能看信息概要。自己去源代码中按图索骥,反向一步步找库函数的源代码涉及的。然后再按照方法一,带着结果去找代码,效率翻倍。插件来实现,查程序运行后的变量数组在哪都有什么。方法二:Jupyter——实时显示变量是通过。原创 2023-04-13 10:07:59 · 530 阅读 · 0 评论 -
Python/Pytorch/Tensorflow/QT安装
就算多个项目使用同一个版本的python,这时候还是需要创建conda虚拟环境的,比如一个项目用Pytorch开发,一个项目用TensorFlow开发,不同框架对python包依赖,对底层库的依赖是不同的, 此时可能会起冲突,比如安装Pytorch后再安装TensorFlow时可能会将Pytorch所用依赖更新,则会导致Pytorch无法运行。(如安装5.15以上,出了错被卡了2~3天还没解决,因为太新,网上也没有很多修正bug的方案。安装python时,不必单独安装,可直接安装anaconda。原创 2023-04-10 20:19:56 · 1372 阅读 · 1 评论 -
《AI大模型之美》笔记备忘
注意,colab的文件存在:/content/drive/MyDrive/Colab Notebooks文件夹里。Colab: 在线使用Jupyterlab,无需本地搭建环境 https://colab.research.google.com/2.1重新出发,学会和AI说话——调通系统,完成和chatgpt 的API_KEY 首次连接,返回数据。/完成Colab的使用。接下来:使用终极解决方案,即用colab访问云盘的东东:事先把课程相关资料传到Google云盘,然后按照路径规则就可以随意访问。原创 2023-05-31 15:19:03 · 248 阅读 · 0 评论 -
Python QT笔记
但问题是,这些大都是碎片化的信息。对于初学者,东学西学,学的越多碎片,越容易困惑。没有结构化的知识,和可重复性复习的教材。隔段时间再回来,脑中什么都没有。本文推荐是另一种可复制的有效学习方法,不仅适合QT,也适合其他领域知识或工具。优点:1,对QT软件安装、QT的设计原理、优秀便捷的程序架构思想、敏捷开发方法都有非常好的介绍和实战。会对日后做QT,甚至整个项目开发打下非常坚实的基础。缺点:书本写的对初学者有些晦涩难懂,虽仅有两章,也需要沉下心学几天。对于QT, 新手经常做到哪查到哪。原创 2023-04-13 10:25:30 · 350 阅读 · 1 评论 -
BOOK《深入浅出神经网络与深度学习》Michael Nielsen 要点
随机初始化神经网络的权重和偏置,有概率会导致神经元输出饱和,此时使用MSE(二次代价函数)时,即使犯了明显错误,但因为设置到其导数平坦区(饱和区),导致学习率缓慢。原创 2023-07-21 15:16:12 · 379 阅读 · 1 评论 -
电脑C盘优化(模拟电脑故障时快速恢复环境)
分析:经过近两个小时分析,占用150G的C 盘的两个大的原因找到了:一、anaconda 程序5G,及.conda文件夹10G(用everything搜到)二、“桌面”文件夹5G,“下载”文件夹50G(出乎意料)原创 2024-03-04 22:27:59 · 395 阅读 · 1 评论