人工智能在招投标领域的运用---监控视频连续性检测

作者:舒城县公共交易中心  zhu_min726@126.com

原创,转载请注明出处。

摘要

随着人工智能(AI)技术的飞速发展,其在各个领域的应用日益广泛。本文旨在探讨人工智能在招投标领域的运营,重点介绍AI对视频完整性进行检测的具体算法。视频完整性检测在防止监控视频人为变造和剪辑中起着至关重要的作用,保障了招投标过程的公正性和透明度。

引言

招投标过程是公共和私人项目中确保公平竞争的重要手段。监控视频作为招投标过程中的重要组成部分,能够有效地监督和记录整个过程。然而,随着技术的进步,视频篡改变得越来越容易,这对招投标过程的公正性提出了严峻挑战。人工智能技术,特别是视频完整性检测算法,提供了一种有效的解决方案来防止视频篡改。

人工智能在招投标领域的应用

1. 招投标过程中的视频监控

在招投标过程中,视频监控能够记录整个招标和投标的各个环节,确保每一步都在透明和可监控的环境下进行。这些监控视频为评标委员会提供了重要的参考依据,有助于维护招投标的公正性和透明度。

2. 视频篡改的风险

尽管监控视频在招投标过程中起到了重要作用,但其也面临着被人为篡改和剪辑的风险。这些篡改行为可能包括视频的拼接、删除、插入和伪造,进而影响评标结果的公正性。

AI对视频完整性进行检测的具体算法

1. 算法概述

人工智能对视频完整性进行检测的算法主要包括基于深度学习的模型,如卷积神经网络(CNN)和循环神经网络(RNN),以及其他机器学习算法。这些算法通过对视频帧和音频的分析,检测视频中的异常和篡改痕迹。

2. 时序一致性检测

算法概述

时序一致性检测主要是通过分析视频帧之间的时间关系,检测出视频中的异常情况。常用的算法包括循环神经网络(RNN)和长短期记忆网络(LSTM),这些算法擅长处理时间序列数据。

视频分割

对于时长24小时的视频,直接处理整个视频是不现实的。通常会将视频分割成更小的片段,每个片段可能是1分钟到5分钟不等。这些片段会分别进行处理和分析,然后再综合所有片段的结果。

判断方法
  1. 特征提取:从每个视频片段中提取特征,如帧的时间戳、帧间差异、运动矢量等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值