摘要
围标(bid rigging)是一种非法的竞争行为,对市场公平性和公共资源分配造成严重影响。本文探讨了如何利用投标相似度来辅助判定围标行为。通过详细分析投标文件的内容相似性,选取适当的指标进行相似度计算,并结合实际案例验证其有效性。
引言
围标行为通常通过提交高度相似的投标文件实现,传统的人工审查难以有效识别这些行为。利用人工智能和自然语言处理(NLP)技术,可以对投标文件进行深度分析,识别出潜在的围标行为。本研究重点在于通过相似度分析来辅助围标判定。
相似度计算的指标
在分析投标文件的相似度时,需要选取多个关键指标进行衡量。以下是几个主要的相似度衡量指标及其具体实现方法:
1. **词频-逆文档频率(TF-IDF)**:
- **原理**:TF-IDF是一种统计方法,用于评估一个词语在一个文档中的重要程度。TF表示词频,即一个词在文档中出现的次数。IDF表示逆文档频率,用于衡量词语的普遍性。
- **实现步骤**:
1. 对每份投标文件进行分词处理,去除停用词和标点符号。
2. 计算每个词在文档中的TF值。
3. 计算词语在整个文档集中的IDF值。
4. 乘积得到每个词的TF-IDF值,生成文档的TF-IDF向量。
2. **余弦相似度(Cosine Similarity)**:
- **原理**:余弦相似度用于计算两个向量之间的相似度,通过计算向量夹角的余弦值来判断相似程度。其值在-1到1之间,值越接近1表示相似度越高。
- **实现步骤**:
1. 将每份投标文件的TF-IDF值向量化。
2. 计算两个向量的点积。
3. 计算两个向量的模。
4. 计算点积与模的比值,得到余弦相似度。
3. **Jaccard相似度(Jaccard Similarity)**:
- **原理**:Jaccard相似度用于衡量两个集合的相似度,是两个集合交集与并集的比值。其值在0到1之间,值越接近1表示相似度越高。
- **实现步骤**:
1. 对每份投标文件进行分词处理,生成词集。