题解:
简单应用,先选中必选边,再在可选边中求一次最小生成树。
#include <stdio.h>
#include <iostream>
#include <algorithm>
using namespace std;
int n,m,cnt,ans,father[2000+10];
struct data{
int u,v,w;
}e[10000+10];
bool cmp(const data &a,const data &b)
{
return a.w<b.w;
}
int find(int x)
{
if(x!=father[x]) father[x]=find(father[x]);
return father[x];
}
void insert(int x,int y,int v)
{
cnt++;
e[cnt].u=x;e[cnt].v=y;e[cnt].w=v;
}
void Union(int x,int y)
{
x=find(x),y=find(y);
if(x!=y) father[x]=y;
}
int main()
{
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++)
father[i]=i;
int x,y;
for(int i=1;i<=m;i++)
{
int p,u,v,w;
scanf("%d %d %d %d",&p,&u,&v,&w);
if(p==1)
{
Union(u,v);
ans+=w;
}else
{
insert(u,v,w);
}
}
sort(e+1,e+cnt+1,cmp);
for(int i=1;i<=cnt;i++)
{
x=find(e[i].u),y=find(e[i].v);
if(x!=y)
{
Union(x,y);
ans+=e[i].w;
}
}
printf("%d\n",ans);
return 0;
}