保存方法
先建立一个网络 net1
torch.save(net1, 'net.pkl') #保存全部网络
torch.save(net1.state_dict(), 'net_params.pkl') #保存参数
提取方法1 提取全部网络
def restore_net():
# restore entire net1 to net2
net2 = torch.load('net.pkl') #直接提取net1
prediction2 = net2(x)
提取方法2 提取参数
需要自己再建立一个跟要提取的网络 一模一样的网络(本文是net3)
然后提取参数
net3 = torch.nn.Sequential(
torch.nn.Linear(1, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1)
)
# copy net1'parameters into net3
net3.load_state_dict(torch.load('net_params.pkl'))
prediction3 = net3(x)
全部代码如下
import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt
# torch.manual_seed(1)
# fake data
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2 * torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1)
x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False)
def save():
# save net1
net1 = torch.nn.Sequential(
torch.nn.Linear(1, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1)
)
optimizer = torch.optim.SGD(net1.parameters(), lr=0.5)
loss_func = torch.nn.MSELoss()
for t in range(100):
prediction = net1(x)
loss = loss_func(prediction, y)
optimizer.zero_grad() # 实验的时候,刚开始,忘了这个,拟合完全失败啊
loss.backward()
optimizer.step()
# plot result
plt.figure(1, figsize=(10, 3))
plt.subplot(131)
plt.title('Net1')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
# !! 2 ways to save the net
torch.save(net1, 'net.pkl')
torch.save(net1.state_dict(), 'net_params.pkl')
def restore_net():
# restore entire net1 to net2
net2 = torch.load('net.pkl')
prediction = net2(x)
# plot result
plt.subplot(132)
plt.title('Net2')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
def restore_params():
# restore only the parameters in net1 to net3
net3 = torch.nn.Sequential(
torch.nn.Linear(1, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1)
)
# copy net1'parameters into net3
net3.load_state_dict(torch.load('net_params.pkl'))
prediction = net3(x)
# plot result
plt.subplot(133)
plt.title('Net3')
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.show()
# swve net1
save()
# restore entire net(may slow)
restore_net()
# restore only the net parameters
restore_params()