FASTER R-CNN

Faster R-CNN

(声明:本文非原创

综合了 深度学习目标检测模型全面综述:Faster R-CNN、R-FCN和SSD

基于深度学习的目标检测技术演进:R-CNN、Fast R-CNN、Faster R-CNN


Fast R-CNN存在的问题:存在瓶颈:选择性搜索,找出所有的候选框,这个也非常耗时。那我们能不能找出一个更加高效的方法来求出这些候选框呢?
解决:加入一个提取边缘的神经网络,也就说找到候选框的工作也交给神经网络来做了。
做这样的任务的神经网络叫做Region Proposal Network(RPN)。

具体做法:
  •    将RPN放在最后一个卷积层的后面
  •    RPN直接训练得到候选区域

RPN简介:
  •    在feature map上滑动窗口
  •    建一个神经网络用于物体分类+框位置的回归
  •    滑动窗口的位置提供了物体的大体位置信息
  •    框的回归提供了框更精确的位置

RPN 工作原理:

在最后卷积得到的特征图上,使用一个 3x3 的窗口在特征图上滑动,然后将其映射到一个更低的维度上(如 256 维),
在每个滑动窗口的位置上,RPN 都可以基于 k 个固定比例的 anchor box(默认的边界框)生成多个可能的区域。
每个 region proposal 都由两部分组成:a)该区域的 objectness 分数。b)4 个表征该区域边界框的坐标。

图中 2k 分数代表了 k 中每一个边界框正好覆盖「目标」的 softmax 概率。这里注意到,尽管 RPN 输出了边界框的坐标,然而它并不会去对任何可能的目标进行分类:它惟一的工作仍然是给出对象区域。如果一个 anchor box 在特定阈值之上存在一个「objectness」分数,那么这个边界框的坐标就会作为一个 region proposal 被向前传递。

一旦我们有了 region proposal,我们就直接把他们输入一个本质上是 Fast R-CNN 的模型。我们再添加一个池化层、一些全连接层以及最后,一个 softmax 分类层和边界框回归器(bounding box regressor)。所以在某种意义上,Faster R-CNN=RPN+Fast R-CNN。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值