1 Faster R-CNN的改进
RPN实际上是Faster R-CNN中的一个小的神经网络,通过这个网络来生成候选区域框ROI;
集成Region Proposal Network(RPN)网络:
1 Faster R-CNN = Fast R-CNN +
RPN
2 使用
RPN
网络取代
Selective Search
模块
解决Fast R-CNN的性能瓶颈
3 候选框生成网络RPN和检测网络Fast R-CNN
共享卷积层计算
4 Region proposals量少质优(~300)
利用NMS去除低质量的候选框
高precision、高recall
2 RPN理解
1 对比Fast R-CNN
Fast R-CNN:
结构简单理解:基于给定的候选框,通过一个深度学习网络,判断这个候选框里面是否有物体以及对应物体的类型信息(分类分支);如果有确定的类别物体,那么该候选框和真实边框之间的偏移信息(回归分支)
候选框使用算法SS生成
;而且每个候选框大小不定,所以需要使用RoI池化;
结果输出就是最终预测边框;
RPN:
结构简单理解:基于给定的初始框/Anchor Box,通过一个深度学习网络,判断这个初始框里面是否有物体(分类分支);如果有物体,那么该初始框和真实边框之间的偏移信息(回归分支)
初始框使用规则方式生成
;

最低0.47元/天 解锁文章
7769

被折叠的 条评论
为什么被折叠?



