Faster R-CNN

1 Faster R-CNN的改进

RPN实际上是Faster R-CNN中的一个小的神经网络,通过这个网络来生成候选区域框ROI;
集成Region Proposal Network(RPN)网络:
 
  1 Faster R-CNN = Fast R-CNN + RPN
  2 使用 RPN 网络取代 Selective Search 模块 解决Fast R-CNN的性能瓶颈
  3 候选框生成网络RPN和检测网络Fast R-CNN 共享卷积层计算
  4 Region proposals量少质优(~300)
          利用NMS去除低质量的候选框
          高precision、高recall        

2 RPN理解

1 对比Fast R-CNN

Fast R-CNN:
结构简单理解:基于给定的候选框,通过一个深度学习网络,判断这个候选框里面是否有物体以及对应物体的类型信息(分类分支);如果有确定的类别物体,那么该候选框和真实边框之间的偏移信息(回归分支)
候选框使用算法SS生成 ;而且每个候选框大小不定,所以需要使用RoI池化; 结果输出就是最终预测边框;

RPN:
结构简单理解:基于给定的初始框/Anchor Box,通过一个深度学习网络,判断这个初始框里面是否有物体(分类分支);如果有物体,那么该初始框和真实边框之间的偏移信息(回归分支)
初始框使用规则方式生成
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值